
Video Game UDP Client / Server Design and Implementation

With a cross platform, networked, example game in Unity 3D

By: Brian A. Ree

Copyright Info

Video Game UDP Client / Server Design and Implementation, First Edition
With a cross platform, networked, example game in Unity 3D
Copyright © 2019 Brian A. Ree and Middlemind Games
All distribution and modification rights are reserved. Please contact Middlemind Games at info@middlemindgames.com for any inquiries regarding this text.
This book is distributed in the hope that it will be a useful learning guide or stepping stone for video game developers seeking to create networked video games of their own. This book is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. That being said much diligent work was put into the Java and C# UDP client/server code as well as the Unity 3D example game.
Middlemind Games, LLC
info@middlemindgames.com
http://www.middlemindgames.com
ISBN: 0-000000-00-0

Dedication

This book is dedicated simply to all those individuals who wake up every day and truly try. Don’t worry you’ll get there, just don’t give up.

Part 1: Preface

Why was This Book Written
This book was written as the culmination of a sustained effort to make video game client/server software more available to the small, independent, software developer. This book is an attempt to review and explain a simple, efficient, customizable, cross-platform UDP client/server implementation.
The pages of this book document and detail the design and implementation of the client/server software and the example Unity 3D game so that others might learn from it and use the knowledge to further this project or their own. Lastly, it is an attempt to empower those who are new to coding, video game development, or network software design so they might achieve their goals faster by giving them a solid tool to build their network games with.
What is the Goal of This Book
The goal of this book is to teach the reader about a specific cross-platform UDP client/server implementation so that the reader can utilize and control the provided software to suite their needs, or to use the knowledge as a basis for their own software.
The reader should also gain some experience with Java, Netbeans IDE, and socket programming through the review of the code throughout this book. The software has been written in Java and C#, both code bases are provided, but for the sake of brevity only the Java version is covered in this text.
The reader will also be exposed to a larger, cross-platform software development project and the inherent experiences that entails. Last but not least the reader will gain some experience with Unity 3D, C#, Visual Studio Community Edition, and to some extent setting up a backend UDP server for the included Unity 3D example game, depending on the needs and resources of the reader.
Who is This Book For
This book is for software developers with beginner to intermediate level programming experience who want to learn more about video game network programming. Developers with beginner level experience may find the code somewhat challenging but since fully functional software is the basis for this code review those developers should be able to keep up with a little effort.
That being said, software developers with intermediate to advanced level programming experience may find the book and its software to have value otherwise not originally intended. It should also be said that while the book details the code driving a UDP client/server under the context of writing a networked video game, the target implementation does not have to be a video game and the book should still have value in this circumstance.
What are the Requirement for This Book
This book requires that you have access to at least one computer and that you can install and run software on said computer. You should have a working familiarity with the computer you will be using. Also, familiarity with the command line interface for your environment, Mac or Windows, is useful but not required. While I don’t specifically provide Linux instructions for certain aspects of the included software, Linux users should be able to easily follow and adjust the Mac instructions. There are places in this book where it will be helpful to have more than one computer, for instance when setting up the backend server, these will be limited as much as possible to keep this text as accessible as possible.
How is This Book Organized
This book is organized into the following parts.
 	Section
	Description

	Part 1
	Preface

	Part 2
	Introduction

	Part 3
	Netbeans IDE Introduction

	Part 4
	Server Code: Main Classes 1

	Part 5
	Client/Server Code: Supporting Classes

	Part 6
	Server Code: Main Classes 2

	Part 7
	Client/Server Demo and Log Trace

	Part 8
	Client Code: Main Classes

	Part 9
	Customization Interfaces

	Part 10
	Unity 3D Introduction

	Part 11
	Unity 3D Example Game: Prefab Review

	Part 12
	Unity 3D Example Game: Helper Classes

	Part 13
	Unity 3D Example Game: Main Classes

	Part 14
	Conclusion: Playing The Example Game

A brief description of each part of this text is listed below.
Part 1: Preface
Addresses the scope and purpose of this book as well as its overall structure and conventions.
Part 2: Introduction
Introduces the subject of the book and addresses the path of knowledge the book lays out, its purpose and intent.
Part 3: Netbeans IDE Introduction
A brief introduction to the Netbeans IDE for Java software development. This section also includes information on how to check your current Java configuration, on the installation of Java SE, and on the installation of the JRE. This part of the book closes with a brief demonstration of the software including the Unity 3D example game.
Part 4: Server Code: Main Classes 1
The first half of a detailed review of the main classes that power the server side of the UDP client/server implementation.
Part 5: Client/Server Code: Supporting Classes
A detailed review of the supporting classes used by the UDP server and client.
Part 6: Server Code: Main Classes 2
The second half of a detailed review of the main classes that power the server side of the UDP implementation.
Part 7: Client/Server Demo and Log Trace
A review of the client/server code from the perspective of a console demonstration mode with a focus on reviewing the server and client logs to get a deeper understanding of the code reviewed thus far.
Part 8: Client Code: Main Classes
Building on the knowledge gained from the server code and the client/server interactions outlined in the previous section we take a detailed look at the UDP client code in this part.
Part 9: Customization Interfaces
A detailed look at the customization interfaces used to extend the functionality of the client/server software.
Part 10: Unity 3D Introduction
An introduction to Unity 3D including an overview of the installation of the software. A brief UI overview, and resources for understanding basic aspects of the Unity 3D API.
Part 11: Unity 3D Example Game: Prefab Review
The start of an in-depth review of the Unity 3D example game covering the prefabs, models, and important components that make up the game’s foundation.
Part 12: Unity 3D Example Game: Helper Classes
Building on the material covered in Part 11 this review covers important helper classes as we build up our knowledge and familiarity of the Unity 3D example project and prepare for a review of the main classes powering the game.
Part 13: Unity 3D Example Game: Main Classes
A detailed review of the main classes that power the Unity 3D example game including the use of and customization of the UDP client/server code.
Part 14: Conclusion: Playing The Example Game
A conclusion to the code review journey wrapping things up with some detailed instructions on how to run the example game on Windows and Mac in different configurations.
Conventions Used in This Book
The following typographical conventions are used in this book.
Italic Font:
Used to display URLs.
Mono Font Bold:
Used to display proper nouns such as class names, class members, variables, files, folders, etc.
Smaller Mono Font:
Used to display sections of code for review.
Accessing Code and Projects Online
You can access the latest version of the code for each project here, http://www.middlemindgames.com/udpbook/. Please be sure to check for updates to the different projects periodically. Part 14 of this book contains detailed instructions on how to download and run the game in different configurations and on different systems.
Models and Artwork
The models and artwork used to power the Unity 3D example game are attributed to: Unity Games by Tutorials: Make 4 Complete Unity Games from Scratch Using C#, available at https://www.raywenderlich.com. Check out the site it has some great stuff! You can buy a copy of the book I read that inspired me to write the code and this code review manual at https://www.amazon.com. I found it to be a solid resource.

Part 2: Introduction

Have you ever wanted to create your own video game? have you ever wanted to expand your simple single player video game to include network support? If either of these two questions strikes a coord with you or if you’ve spent more time researching UDP network programming than actually writing code then this book is for you.
Having written software, including the occasional video game, for over 15 years now I’m still shocked at how things in the world of software work. It would seem that although things have gotten easier they aren’t always as easy as we’d like them to be. When confronted with adding network support to a single player game I’d been messing with in Unity 3D I found myself once again at the bottom of the learning curve.
I was faced with either having to research and learn Unity 3D’s generic network support, which was in the process of being updated to a new implementation, or to research and learn UDP socket server design an implementation with video games in mind. I chose the latter and decided to document the resulting code and example Unity 3D game in this text.
Turns out implementing the canned networking code that Unity 3D offered wasn’t going to work well with my procedurally generated levels, and good luck writing network support into the FPS package I was using. I thought that things should be easier. I felt that I should be able to plug my game code into some networking library and bam! A networked video game, and why not.
The problem I ran into was that high level solutions like the FPS package I was using were too specific, not easy to extend, and the high level network support built into Unity 3D required me to heavily adjust my core game implementation. What I needed was something low level and general so I wrote a cross-platform UDP client/server implementation that is simple, efficient, and flexible.
The code actually doesn’t care if it is being used to power a game it is simply a UDP client/server implementation that passes GameObjectWrapper data, more on this to come, from client to server and on to other clients in the game. This book is the culmination of that effort and provides a detailed review of the logic, design, and implementation of the UDP client/server code.
To demonstrate the use of the code a sample Unity 3D third person shooter, networked, video game is included and reviewed in detail. The solution uses the Java version of the backend UDP server, the C# version of the UDP client, and a C# based Unity 3D project including all code and precompiled binaries that will run on Mac, Linux or Windows.
This book includes the full source code to the Java and C# implementations of the UDP client/server software, the code was implemented on both platforms and is cross-platform compatible. I hope that you get great use out of the code, extend it, enhance it, and make it your own. Anything you need to do to get your project moving! Enjoy!

Part 3: Netbeans IDE Introduction

For this part of the book you’ll need your computer. Fire it up and head over to https://netbeans.apache.org/download/index.html to download the latest version of the Netbeans IDE. Below is a screenshot depicting Netbeans IDE version 11.0, the latest at the time of this writing.
[image:]
Click the download link shown above or you can just use this URL and navigate there directly, https://netbeans.apache.org/download/nb110/nb110.html.
[image:]
Click the link next to the “Binaries” label, or you can just use this URL, https://www.apache.org/dyn/closer.cgi/incubator/netbeans/incubating-netbeans/incubating-11.0/incubating-netbeans-11.0-bin.zip.
[image:]
You’ll be taken to a download page with download URLs and mirror sites. Choose one and allow the zip file to finish downloading. Completing the installation of the IDE should set you up with a recent version of the Java runtime environment. Once the installation has completed, before we start up the IDE, let’s check to see if a newer version of Java’s JRE has come out.
Go to https://www.java.com/en/download/installed.jsp in your favorite browser and follow the instructions to verify and update, if need be, your Java runtime environment. You should see a web page similar to the one depicted below, which was taken at the time of this writing. If the URL listed above no longer exists use your favorite search engine to look up the best way to verify Java on your computing platform.
[image:]
You’ll also need to install Java SE. The URL at the time of this writing is as follows, https://www.oracle.com/technetwork/java/javase/downloads/index.html. You can always use your favorite search engine to look up how to install the latest versions of the JRE and Java SE. The screenshot below depicts the current download page for Java SE. Select the correct download for your computing environment.
[image:]
Once you’re done with this step and you’re all updated and ready to go fire up the Netbeans IDE you just finished installing. Close any first run, tip of the day, or project load popups, we’ll check for updates first so you can see how it’s done.
On Windows go to the Help menu and select the Check for Updates option to perform the necessary checks. On a Mac go to the application menu and select the About option, click Check for Updates on the subsequent popup screen. This process should be performed periodically to ensure you have the latest stable version of the IDE installed.
Create a new project by selecting New Project from the File menu on Windows or Mac. Familiarize yourself with the ins and outs of creating a new Java project. For basic Java projects use the Java with Ant new project category. You can create both basic Java application projects and Java class library projects from this category. Pay close attention to the project directory and default JRE settings when creating a new project. Go ahead and create a new empty project with the name of your choice, we’ll be using it to demonstrate some basic IDE functionality.
Once your project is loaded, and you’re familiar with the project creation process and filesystem paths, expand your project so that you can see the Source Packages folder in the left hand navigation pane. Right click the folder and select New then select the option Java Package, as depicted below.
[image:]
Packages in Java are usually named after domains, except in reverse order, with some descriptive text as the last word in the package name. So if my domain is www.middlemindgames.com my packages would start with com.middlemindgames, and end with some meaningful description. For example com.middlemindgames.udp_client could be a package name used to hold, you guessed it, UDP client classes.
This book will assume no knowledge about certain subjects is preexisting and will attempt to provide some base knowledge when subjects are discussed for the first time. Packages are Java’s higher level code encapsulation device, in C# a loose equivalent would be namespaces.
The idea is that packages, and namespaces if you’re talking about C#, contain classes that are associated with each other and have some associated use or purpose, frequently involving complex interactions. An example of this would be the java.io package included in the Java SE development kit. The package contains classes for reading and writing all types of different data and streams and there are also classes for handling paths, buffers, and other features necessary when writing and reading data.
Many of the classes associated with IO are part of the java.io package. This helps separate, organize, and label code clearly which makes our projects better structured and easier to use and understand. Practice creating, deleting, and refactoring packages in your project. You can access all of the menu options needed to perform these operations, and more, by right clicking the Source Packages entry in the left hand project pane, as depicted above.
Try creating multiple packages with deeper levels, like com.yourdomain.net.udp.client and com.yourdomain.net.udp.server. Next try creating new Java classes by right clicking the package name in the project’s left hand navigation pane and selecting New from the context menu. Choose Java Class, you can also create new project files from the File menu by selecting the New File option. Create a new empty Java class using the name of your choice. Practice deleting files, creating new classes, and using the Refactor menu option to alter the names of Java files and classes.
You should try creating, deleting, and refactoring interfaces, enumerations, and other Java essential entities as well. This will put you in a good position with regard to project management in that you can now manipulate most main Java entities with ease. Nice! We quickly covered the Netbeans IDE installation, JRE version checking, Java SE installation, Netbeans IDE updates, and project management topics.
Next we’ll quickly cover downloading and installing the Java code base for this book onto your machine. Go to http://www.middlemindgames.com/udpbook and look for the header named Java / Netbeans Project. Use the links below the header to download the latest version of the Java code for the Netbeans IDE. Expand the zip file using your OS provided compression support, see screenshots below. Copy and paste the resulting folder into the Netbeans IDE’s default project directory you familiarized yourself with earlier. Do this for the Eds3App and Eds3Server projects.
Below is a screenshot showing how to decompress a zip file on Windows 10, the zip file used for this screenshot is the Netbeans 11 zip file, not the project files mentioned above.
[image:]
Below is a screenshot showing how to decompress a zip file on a Mac, the zip file used for this screenshot is the Netbeans 11 zip file, not the project files mentioned above.
[image:]
You can now load this project in Netbeans by choosing File then Open Project from the application’s menu. You should load up the two projects you’ve downloaded. Once that is done you should see the Eds3App and Eds3Server entries in the project navigation pane on the left hand side of the Netbeans IDE’s interface.These two projects will be the focus of many parts of this book.
Take a moment to peruse them. Familiarize yourself with some of the package and class names involved in the projects. To get you interested in the capability of the software we will demo the UDP client/server interaction using the built in mock mode capability which mocks having a game running in the background.
In order to run a demo of the UDP client/server software synchronizing fake game object data across multiple clients we need to build a clean copy of both projects. After the projects are loaded in Netbeans right click on the Eds3Server project and select Build from the context menu. Allow the build process to complete, you should see an indicator and a build results message at the bottom of the Netbeans IDE. Allow the process to complete before performing the same operation on the Eds3App project. Now we can be sure the resulting jar files are up-to-date when we run the example game.
You’ll need to open up two consoles to run this demonstration, one for the client and one for the server. On a Mac use the Terminal window, on Windows a DOS cmd prompt will do the trick. See below for a Mac screenshot showing two Terminal windows side-by-side and where to find the default Terminal application under the Utilities folder in the Applications directory.
[image:]
Two Terminal windows running side-by-side on a Mac.
[image:]
To open up the cmd prompt on Windows. Click the Start button and then start typing cmd, you should see a list of programs as depicted below. Select the Command Prompt application to launch a console. Do the same thing again so that you have two command prompt consoles open.
[image:]
Two DOS command prompt consoles, sometimes referred to as terminals, running side-by-side on Windows.
[image:]
Navigate to the Netbeans IDE’s project directory your environment uses then find the UDP Java code you recently downloaded and installed. You want to navigate to the folder in the Eds3App project that has the dist folder in it, this should be in the project’s main folder. Make sure both Terminal windows are pointing to the same directory.
If you don’t see the dist folder make sure that the both the EdsApp and EdsServer projects are configured to use the dist directory as the destination build directory for the jar file. You can access the project properties screen by right clicking on a project in the left hand navigation pane and selecting the Properties menu option.
The screenshot below shows the proper configuration of the Eds3Server project. The Eds3App should be similarly configured. Build both projects, starting with Eds3Server first, to make sure the jar files are fresh and in the correct place.
[image:]
To start up the demonstration server type the following command into the Terminal. Change directory to the Netbeans IDE’s default project folder. The command I use is depicted below in the Teminal window.
cd /Users/victor/Documents/files/netbeans_workspace/Eds3Java/Eds3App
[image:]
Next run the command needed to start up the server. The command is listed below and a screenshot of the Terminal is shown.
java -jar ./dist/Eds3App.jar server 127.0.0.1 50006
[image:]
Hit enter and the Java version of the UDP server software will start up and begin listening for connections on the loopback network interface, this is a special IP address that points to the local network interface on most modern operating systems, on port 50006. The argument, server, is there to indicate that we want the server version of the software to start.
[image:]
In keeping with the practice of providing basic details for concepts the first time we come across them, UDP stands for Universal Datagram Packet and is a type of network protocol somewhat similar to TCP except that UDP is much simpler, lighter, faster, and has no delivery guarantees. That being said it’s lean and mean and perfect for networked video games.
Nicely done, we have half the demo up and running although it certainly won’t be doing much until we get the clients going. Now in the next Terminal window type the following command but don’t hit enter right away.
java -jar ./dist/Eds3App.jar clients 127.0.0.1 50006
Ok, now take a deep breath and submit the command by hitting enter. You should see a burst of activity as the client’s Terminal window spawns five or six clients to synchronize mock video game data across the UDP server running in the other Terminal window. Although the screenshots above depict terminals running on a Mac you can run the same exact Java commands on Windows consoles.
Now while this may seem trivial let’s review what it is we have going on here. We have a UDP server running in Java and listening to connections on port 50006 for local IP address 127.0.0.1. We also have a set of clients all sharing information with each other through the UDP server. Not too bad for a few minutes worth of work.
There should be a fair amount of text flashing across the Terminal windows, don’t worry the clients will stop after a preset number of network interactions occur. What you are witnessing is the client/server mock mode demonstration where the clients pretend to be running a video game by synchronizing randomly generated mock video game objects. By mock video game objects we mean fake data about the position and rotation of fake video game objects. Not so bad huh? You should see something similar to the screenshot below.
[image:]
Still not convinced this book and the software it reviews can help you get where you need to go? Let’s do another demonstration! This new demonstration is going to run a special version of the Unity 3D game that is designed to work with the local loopback IP address. You can download a copy of the special local version of the example game at the following URL http://www.middlemindgames.com/udpbook. Locate the “Local” binaries that correspond with your operating system. These are precompiled to target IP address 127.0.0.1 and port 50006.
Unzip the downloaded file and if need be make a copy of the game as depicted below. You can do the equivalent on a PC by creating a copy of the resulting game folder and changing the name of the .exe file and corresponding data directory. Doing this on a Mac will make sure we can run two copies of the game side-by-side. The screenshot below depicts the desired results. The names of the files you use might be slightly different than those depicted below.
[image:]
On Windows the two copies of the local executable are depicted in the screenshot below.
[image:]
Make sure you have your server up and running in a console and start up the two copies of the example game. You should see something similar to the screenshot below. Try moving the individual players around and firing some projectiles at them. Use the mouse or the N,M keys to rotate. Movement is achieved by using the arrow keys, up, down, left, right. Finally, jumping and shooting are accomplished by using the J and K keys respectively. You can also click the mouse’s left button, left click, to shoot.
[image:]
I know this demonstration is far from the Netbeans IDE introduction we started this part of the book with and is a little off topic but I wanted to demonstrate what the code we’ll be reviewing in this book actually does. It’s a synchronized, real-time, UDP client/server implementation that is cross-platform and flexible enough to plug into Unity 3D while using Java on the backend.
Not bad at all. The next parts of this book will explain, in detail, how the code is designed, how it works, and how it can be customized and plugged into your next game. It will also cover, in detail, the structure and implementation of the Unity 3D example game. Enjoy!

Part 4: Server Code: Main Classes 1

Ever wonder how games like FortNite and PUBG work behind the scenes? Does it seem almost magical how one hundred players can all participate in a massive networked video game? This book will outline a video game client/server implementation that is fast and efficient and will have you well on your way to building the next great multiplayer video game.
The code that we will review in this and upcoming parts of this book are based on the Java version of the software. There is also a C# version of the software but the line numbers won’t match up to the Java code snippets. Aside from that it should be just as understandable for most coders. So if you want to follow along using the C# version of the UDP client/server code that should be fine.
Both client/server implementations are compatible, true cross-platform implementations down to the method names. You can run the Java server with the C# client, or vice-versa. In fact the example game uses the C# client plugged into a Unity 3D project with Java as the backend server. Even if you’re not entirely interested in the cross-platform aspects of the code it might be worth taking a look at how it’s implemented. It will give you a basic understanding of cross-platform API implementation techniques.
If you’re new to socket programming don’t worry you’ll gain experience throughout the course of this book. Because games require fast networking, when they have a real time action element to them, we will choose to use the UDP protocol instead of the TCP protocol. The UDP protocol differs from the TCP protocol, used almost everywhere else, in that there is no guarantee that a packet of data will get delivered. There is no hand shake, and there is no retransmission of the data. The UDP protocol is light, efficient, and has low overhead. It’s perfect for real time action in multiplayer networked video games.
You’re probably thinking, wait, how can this software power a video game with a hundred players in each game? Simplifying things a bit and excluding turn based and other non real time action games, a real time action networked video game will send out data to the server a few times a second. If your game animation loop is running at 60 frames per second, that’s a frame every 16.66 milliseconds.
You should be sending out player data to the server at half that frequency, at the very least. If you can support it, more frequent data transmissions help make the player interaction more fluid and realistic. What does all of that amount to? Well it means that if a few packets of data get lost due to the UDP protocol’s lack of a guaranteed transmission it’s no big deal, new data will be coming along in just a few milliseconds.
Another important aspect of UDP is that the messages are very small, around 9KB, so we can send an receive messages very quickly. Achieving a data transfer rate of a few milliseconds should certainly be possible. We are exchanging the reliability of TCP for the speed and efficiency of UDP.
We’re going to be doing a lot of code review in this book so we’re going to establish a protocol on how code is reviewed. It’s called the “class review protocol” and it is an attempt to convey the structure and meaning of a complex class by presenting its functionality in a structured way. We’ll attempt to build layers of familiarity with the code by working our way up from simple concepts like the purpose of class fields and static class members to the detailed review of complex class methods that use those properties and members.
On a class by class level this means we will follow the review steps outlined below. On a project level, however, we will take a little bit of liberty in how we present classes, choosing either server or client side, supporting or main classes as we see fit given the context.
 	Review Steps

	Static Class Members

	Enumerations

	Class Fields

	Pertinent Method Outline

	Support Method Details

	Main Method Details

Ok, now that we got that part out of the way a little bit about our Unity 3D example game. The example game will be a real time action game with an arcade style to it and a third person perspective. You know this already if you completed the demonstration in Part 3 of this book.
Actually, before we jump into the code, we should cover some general ideas about the code we’re going to review. We need to imagine the way clients and servers will communicate over the network using the UDP protocol. This is how it works. The client will send data to the server, every few milliseconds, about all the game objects that need to be shared with other players.
For instance the local player’s character is one game object that needs its data to be shared with other players. Projectiles fired is an example of another game object that needs its data to be shared with other players. We will refer to these game objects as network game objects, or the game objects that other players need to know about.
We can safely assume that our game is a 3D game, hence Unity 3D, and that the attributes of network game objects that we’re interested in are position and rotation. We can sort of imagine the client code bundling the data it needs to send to the server into an array before sending it out.
But how should the client receive data about other players’ objects? Should the server periodically interrupt the client with new data or should the server respond upon request from the client? In this implementation we decided to use a simple request/response model for the network communication. With some caveats the client will always send a request and await the server’s response.
This request/response communication paradigm is repeated over and over again with different data representing different network interactions used throughout the execution of the networked video game. The phrase network interactions, as it’s used in this text, refers to the request/response model that governs network communication. Let’s look at some code. We’ll start with the static class members of the server class, Eds3Server.java. This is the main class of the backend code.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

30 //Static Properties
31 public static final int DUN_GEN_SEED_ERROR = Integer.MAX_VALUE;
32 public static final int SPAWN_ID_ERROR = Integer.MAX_VALUE;
33 public static final String TEST_URL = "http://www.google.com";
34
35 public static final int MIB_INT = 1048576;
36 public static final int KIB_INT = 1024;
37 public static final int CHECK_LOG_SIZE_TICKS = 25;
38
39 public static final int CHECK_LOG_SIZE = 5000000;
40 public static final int DEFAULT_MAX_GAME_ROOMS = 10;
41 public static final int DEFAULT_MAX_GAME_ROOM_PLAYERS = 10;
42

We’ll review the static class members in smaller groups whenever there are a large number of them to cover. We’ll also do the same thing for class fields. The first two static class fields, lines 31 - 32, refer to the error codes for two of the network interactions we’ll cover soon. The TEST_URL static field is used in the determination of the outward facing IP address and network connectivity status. Lines 35 - 36 are static fields that refer to the size, in bytes, of mebibytes and kibibytes respectively.
The CHECK_LOG_SIZE_TICKS static field is used to track the number of logging calls that can be made before the next check on the log file size is run.This helps keep the log file size under control while preventing constant file system access to check the log file’s size, a potentially costly operation.
The next set of static class fields, on lines 39 - 41, refer to values that control the log file cycling as well as certain properties of the hosted games. Let’s review them. The CHECK_LOG_SIZE static class field refers to the maximum log file size before the log file is recycled. The next two static class fields on lines 40 - 41 control how many network games the server will host and the maximum number of players that can be in a game at one time. These values are important controls that we’ll encounter again as we get deeper into the server side code. Let’s look at the next block of static class fields.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

43 public static final boolean DEFAULT_DEBUG_ON = false;
44 public static final int DEFAULT_PORT = 49986;
45 public static final int DEFAULT_TIMEOUT = 15000;
46
47 public static final int DEFAULT_CONNECTION_TIMEOUT = 15000;
48 public static final String DEFAULT_TITLE = "Eds3Server";
49
50 public static String DEFAULT_LOCAL_IP_ADDRESS = GetLocalIPAddressStat();
51 public static final int DEFAULT_IN_BUFFER = 9000;
52 public static final int DEFAULT_OUT_BUFFER = 9000;
53

In the next block of properties we have a number of default values that are used to initialize corresponding non-static class fields. The DEFAULT_DEBUG_ON static field controls the default value of the logging control boolean. The DEFAULT_PORT static field sets the initial port used for network communications and has a value of 49986. Now remember the client/server software demonstrations from Part 3? We passed in a port number of 50006 if you take a quick look back at the Terminal commands.
The static class fields we are reviewing here are default values but the actual runtime values may differ. The important things to take away from this step in the code review process is asking yourself “What kinds of things does the class under review seem to be concerned with?” and “What do the properties seem to be used for?”. Keep those questions in mind whenever we are looking at class fields, enumerations, etc.
So again what we want to always have at the back of our mind as we review classes like this is the purpose of the properties we are covering. So far we’ve seen a few properties to help control logging, network connection details, and game limitations like maximum game rooms and maximum players in a game room. Let’s keep on going shall we.
On lines 45 - 47 we have static class fields that refer to values for network connection and network communication timeouts. The DEFAULT_TITLE static field is used to give our server a default name, so-to-speak. It’s just a simple field to help add extra details to the logs. Because it’s useful to know the current local IP address of our server the static field DEFAULT_LOCAL_IP_ADDRESS is set based on the return value of a default class method, GetLocalIPAddressStat. We’ll be taking a look at GetLocalIPAddressStat in just a bit.
Static class fields that refer to the default network buffer sizes for input and output buffers can be found on lines 51 - 52. Notice that the sizes of our buffers are really small, as we mentioned previously UDP network communications requires our network packets, and subsequently buffers, to be small. In most cases 8 or 9 KiB is all we’ll be able to use. No worries though we can squeeze quite a bit of data into a buffer of that size, as we shall soon see.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

54 private static final int MIN_PORT = 0;
55 private static final int MAX_PORT = (Short.MAX_VALUE * 2);
56
57 private static final int MIN_TIMEOUT = 0;
58 private static final int MAX_TIMEOUT = (Short.MAX_VALUE * 2);
59
60 private static final int MAX_IN_BUFFER_LENGTH = 9000;
61 private static final int MIN_IN_BUFFER_LENGTH = (KIB_INT * 1);
62
63 private static final int MAX_OUT_BUFFER_LENGTH = 9000;
64 private static final int MIN_OUT_BUFFER_LENGTH = (KIB_INT * 1);
65

The static class fields on lines 54 - 55 reference the valid range of port numbers. Similarly the static class fields on lines 57 - 58 refer to the valid range of timeout values. The same pattern is repeated for in and out buffer length values on lines 60 - 61 and 63 - 64. These static class fields are used to validate values loaded from a configuration file.
The server side code has support for data driven values and as such has some protection in place to prevent erroneous values from being loaded up. Let’s finish the review of the static class fields used by the UDP server class.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

66 private static final boolean FORCE_PORT_USE = true;
67 public static boolean ASYNC_ON = true;
68
69 public static boolean OBJ_PUBLISH_L2_DIST_LIMIT_ON = true;
70 public static double OBJ_PUBLISH_L2_DIST_MAX_SQR = (1000.0 * 1000.0);
71 public static double OBJ_PUBLISH_L2_DIST_MAX = 1000.0;
72
73 public static int IP_SER_LENGTH = 32;
74 public static boolean FORCE_FLUSH = false;
75 public static boolean SERVER_DRIVEN_MODE_ON = true;

The next block of static class fields deals with class configuration as opposed to configuration validation. The FORCE_PORT_USE static class field, line 66, appends the port number to the information used to track client connections, you’ll see why this is important in just a bit. This static class field must be set to true in order to run the software on a single computer with multiple clients, like we did in the demonstration in Part 3.
In general it is safe to leave this set to true. The next field, ASYNC_ON, line 67, controls the internal use of threads when running certain aspects of the server code. It is also safe to leave this static class field set to true. The set of three static class fields on lines 69 - 71 are involved with certain server functionality that increases efficiency when dealing with networked video games that have a large number of players spread out over a relatively large area.
We are referring to a distance detection feature. The OBJ_PUBLISH_L2_DIST_LIMIT_ON static class field controls the use of object distance detection during L2 object publication requests. We will cover L1 and L2 object publication requests in more details soon but for now it’s enough to know that L2 is a more feature filled object publication request.
The OBJ_PUBLISH_L2_DIST_MAX_SQR and OBJ_PUBLISH_L2_DIST_MAX static class fields, on lines 70 - 71, determine the maximum distance two players can have and still be included in the object publication network interaction. In short these class fields drive code that allows the server to more efficiently share data between players.
Since, for certain game types, if two players are far away from each other they can’t really interact and so they don’t need to know about each other. The server has the ability to detect this, when configured properly, and ignore sharing data between the two players.
We use a pre-calculated squared distance value so that we can avoid having to take the square root during distance calculations but we also supply a square root value in case we need it. On line 73 the IP_SER_LENGTH static class field refers to the expected length in bytes used to represent the IP address of a given player. This serialized data is provided as part of the L2 object publication request network interaction. More on this to come.
The next static class field on line 74, FORCE_FLUSH, is a setting class field and it is used to control the logging behavior of the class. With FORCE_FLUSH set to true logging calls will force the output buffer to flush its contents, for each and every call. This adds overhead to the logging subsystem of our software but has the benefit of forcing logs to be written almost immediately which can make debugging asynchronous network interactions much easier. Needless to say be careful about this static class field only set it to true if you need to.
Last but not least on line 75 is the SERVER_DRIVEN_MODE_ON static class field. This is another setting static class field that controls some aspects of the underlying network interaction with clients, as the name suggests. Now we have talked about the overall network communication paradigm, the request/response model, but there are some caveats to how it works so we’ll leave the details behind this static class field for a little later on. That wraps up all the static class fields we need to review, there is one static class method we’ll cover next, GetLocalIPAddressStat.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

405 public static String GetLocalIPAddressStat() {
406 try {
407 return InetAddress.getLocalHost().getHostAddress();
408 } catch (Exception e) {
409 e.printStackTrace();
410 return "0.0.0.0";
411 }
412 }
413

We’ve seen this static class method before, it was used to set an initial value for a static class field, DEFAULT_LOCAL_IP_ADDRESS. This method simply returns the current IP address or an error code IP address if an exception occurs. So far the server class has a mix of static members. Some are properties used to validate other values while some are properties used as settings that control the behavior of the server class.
These static fields should give you an idea of how the class works, a very vague idea in any case - but we’re working on that. Next up we’ll review any enumerations used by the server class as we continue our UDP server code exploration.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

123 public enum Eds3ServerMode {
124 SERVER_RECEIVE_REQUEST_DUNGEN_SEED,
125 SERVER_SEND_REQUESTED_DUNGEN_SEED,
126 SERVER_RECEIVE_REQUEST_SPAWN_ID,
127 SERVER_SEND_REQUESTED_SPAWN_ID,
128 SERVER_RECEIVE_REQUEST_OBJ_PUBLISH_L1,
129 SERVER_SEND_REQUESTED_OBJ_PUBLISH_L1,
130 SERVER_SEND_SET_MODE_CMD,
131 SERVER_RECEIVE_REQUEST_DROP_CLIENT,
132 SERVER_SEND_REQUESTED_DROP_CLIENT,
133 SERVER_RECEIVE_REQUEST_OBJ_PUBLISH_L2,
134 SERVER_SEND_REQUESTED_OBJ_PUBLISH_L2
135 }
136

What can we discern about our UDP server by looking at this enumeration? Can you see it? Well, one feature of this enumeration is that most values come in send/receive pairs. That matches our request/response network communication paradigm, so that makes sense. In fact every single value in the enumeration is part of a pair save for the SERVER_SEND_SET_MODE_CMD value. Another feature noticeable from this enumeration is that there appears to be five interactions supported, dunGenSeed, spawnId, L1 object publication, dropClient, and L2 object publication.
This tells us that we should expect the server code to handle around five types of network interactions. That was very useful. We have an idea of how the client and server are going to communicate. We also have an idea of the number of network interactions the client and server will support, and we have some idea of the responsibilities of the server code after reviewing the static class fields.
Don’t forget we’ve seen static class fields that help with validating settings, network connections, logging, and synchronicity. So the server class is beginning to take shape. Next up we’ll review non-static class fields to further our understanding of the server class’ functionality.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

80 private int totalDataIn = 0;
81 private int totalMsgsIn = 0;
82 private int totalDataOut = 0;
83 private int totalMsgsOut = 0;
84
85 private int inBufferSize = DEFAULT_IN_BUFFER;
86 private int outBufferSize = DEFAULT_OUT_BUFFER;
87 private String version = "0101";
88
89 private String appName = DEFAULT_TITLE;
90 private String title = DEFAULT_TITLE;
91 private int port = DEFAULT_PORT;
92

In the first block of class fields, on lines 80 - 83, we have a few properties that track network message statistics like the number of bytes going in and out of the server as well as the number of messages going in and out of the server. Lines 85 - 86 should be familiar, we are using the static class fields reviewed earlier to set their default values. The version class field is a server identifier that can be used to inform clients of the version of this server implementation, line 87.
Imagine a scenario where some small but important changes were added to the server. Clients could use the server’s version class field to adjust how they interact with the server. Thereby executing different code if the server version matches a certain value and falling back to the original client code if the server version number is older.
Similarly, the appName and title class fields are also server identifier properties but they are mostly used locally at the console or in the logs to determine which server’s logs we are looking into. On line 91 we have a class field that deals with networking. The port class field references the server’s port and is initialized to the default port value. The next block of class variables starts to reveal some of the core aspects of the server class. Let’s take a look.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

093 private int timeout = DEFAULT_TIMEOUT;
094
095 private Hashtable<String, GameRoom> players = null;
096 private ArrayList<GameRoom> gameRooms = null;
097 private boolean shuttingDown = false;
098
099 private int maxGameRooms = DEFAULT_MAX_GAME_ROOMS;
100 private int maxGameRoomPlayers = DEFAULT_MAX_GAME_ROOM_PLAYERS;
101 private String rootDir = ".";
102 private String appDir = "";
103

We’ve seen a mix of class fields thus far, some having to do with class settings, some network settings, etc. On line 93 we have a class field, timeout, that deals with networking, it references the timeout value used in some socket features. It is initialized with the default value we covered earlier.
The next class field is very important, it is a data structure that maps a String to a GameRoom. The field is called players and it holds data for each player connected to the server no matter what game room they are playing in. In this case we are using an associative data structure, a Hashtable that associates a String to a GameRoom.
The identifying string used to create an association to a GameRoom instance is the IP address, and possibly port, of the client. At times I will refer to the client and the player interchangeably. The main thing to note is that we are referring to the UDP client that is running while that player engages in a network game. If the static class field FORCE_PORT_USE is set to true the identifying string used is the client’s IP address and the port that the client is running on.
This flag is required to be set to true in order to perform a multiple client console test on a single computer. Can you see why? Without the extra level of distinction provided by the port number the identifying string would be just the IP address and that would be the same for all local UDP clients connecting to the local server. But by setting FORCE_PORT_USE to true we can make the identifying string unique because no two clients will be assigned the same port number.
The next class field, gameRooms on line 96, is an ArrayList data structure of GameRoom instances. As new players connect to the server new game rooms are created to support them. The gameRooms class field allows you to iterate over all the active game rooms on the server. So if the players class field enabled us to lookup the game room for a given player’s IP address and port number, the gameRooms class field let’s use look at any active game room on the server. The boolean on line 97, shuttingDown, is also an important class field as it toggles the server into shutdown mode, more on this to come.
The next two class fields, line 99 - 100, control the maximum number of game rooms allowed to be active on the server and the maximum number of players that are allowed to be in a single game room. Both class fields fall under the settings category and are initialized to the static field defaults we’ve already covered. The remaining two class fields in this code block rootDir and appDir on lines 101 - 102 are used to map paths to local directories for loading configuration files and writing out log files.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

104 private String configFileName = "config.txt";
105 private String configFilePath = "";
106 private String debugFileName = "debug.txt";
107
108 private String debugFilePath = "";
109 private boolean debugOn = DEFAULT_DEBUG_ON;
110 private BufferedWriter debug = null;
111

In the next code block, listed above, we have class fields for storing the expected config file name, the debug file name, and the paths to those files. On line 109 we have an important class field that controls the debug file logging, debugOn. Following debugOn we have a BufferedWriter instance, the debug class field, used in the writing of debug logs. Notice that the debugOn class field is initialized to the value of the static class field’s default value. The next block of class fields will bring us to the end of this review step.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

112 private FileWriter fw = null;
113 private int wrCount = 0;
114 private String localIpAddress = DEFAULT_LOCAL_IP_ADDRESS;
115 private InetSocketAddress endPoint;
116 private DatagramSocket serverSocket;
117 private boolean closeAllClients = false;
118 private HandleEds3ServerComm commH = null;
119 private GameObjectWrapper gowStatic = null;

We can see that we have some file writing support classes as well as a wrCount tracker in this block of class fields. The FileWriter instance fw, line 112, is used in conjunction with some of the logging control class fields we’ve seen thus far. On line 113, the wrCount class field is used to track how many write calls to the logs have occurred. The localIpAddress class field, line 114, is initialized to the static field default value reviewed earlier. The entries on line 115 - 116 are used in the network control code to initialize the UDP socket.
The boolean on line 117, closeAllClients, is used to tell the server to safely close all client connections. When set to true the server will attempt to trigger each client’s disconnect process. The HandleEds3ServerComm class instance, commH, is used to extend and customize the functionality of the server by providing user defined methods that are called at specific places during normal server operations. There is a whole part of this book dedicated to describing the customization features of the code we’re working with so don’t worry we will cover it.
Lastly we have an instance of the GameObjectWrapper class called gowStatic, line 119, which will be used to access static class fields of the GameObjectWrapper class. Both the client and server use information from static class fields of the GameObjectWrapper class.
Next we will present a method outline for the server class. We will not include simple getters and setters and simple overridden methods like toString unless it has some significance worth discussing. On to the method outline.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

//Constructors
public Eds3Server() { ... }
public Eds3Server(HandleEds3ServerComm commH) { ... }
//Utility Methods
public void PrintEds3ModeValues() { ... }
private void LoadSettings() { ... }
public boolean PrintConfig() { ... }
public boolean GetIsNetworkAvailable() { ... }
public String GetLocalIPAddress() { ... }
public void PrintState() { ... }
private int CountTotalPlayers() { ... }
public void PrintStackTrace(StackTraceElement[] st) { ... }
public synchronized void wr(String s) { ... }
//Logging Methods
private void CreateDebugFile() { ... }
private void CreateDebugFile(boolean append) { ... }
private void CloseDebugFile() { ... }
//Network Helper Methods
private synchronized int GetNewDunGenSeed() { ... }
private synchronized boolean AssignGameRoom(Player p) { ... }
private synchronized boolean IsNewPlayer(String ip) { ... }
private synchronized boolean IsExistingPlayer(String ip) { ... }
public synchronized void ProcessCmd(String cmd) { ... }
//Network Methods
public void run() { ... }
private void StartListening() { ... }
public void Stop() { ... }
public void Start() { ... }
public void CloseAllClients(boolean b) { ... }
private void AsyncNetworkReadCallBack(DatagramPacket receivePacket) { ... }
private void AsyncNetworkWriteCallBack(DatagramPacket sendPacket) { ... }
public synchronized void NetworkReadCallBack(DatagramPacket receivePacket) { ... }
public synchronized void NetworkWriteCallBack(DatagramPacket sendPacket) { ... }

Take a look at the method list, these are the main methods that are used to run the UDP server. As you go over the list of methods think about the static and non-static class fields we reviewed earlier. Think about the values the different properties referenced and how they might be used.
Once you’re done perusing the list we’ll start by reviewing constructors and helper methods. You should start feeling more comfortable working with the server code as we progress. As we review methods and their implementation you’ll become even more familiar with the internals of the server class.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

139 public Eds3Server() {
140 appDir = rootDir + File.separator + appName;
141 configFilePath = appDir + File.separator + configFileName;
142 debugFilePath = appDir + File.separator + debugFileName;
143
144 System.out.println("");
145 System.out.println("App Dir: " + appDir);
146 System.out.println("Config Path: " + configFilePath);
147 System.out.println("Debug Path: " + debugFilePath);
148 System.out.println("Version: " + version);
149
150 LoadSettings();
151 CreateDebugFile();
152 PrintEds3ModeValues();
153
154 players = new Hashtable();
155 gameRooms = new ArrayList();
156 this.gowStatic = this.GetEmptyGameObjectWrapper();
157 }
158

The constructor configures the paths used for configuration and debug logging on lines 140 - 142. Class properties appDir, configFilePath, debugFilePath should be familiar. The appDir class field is set to the rootDir plus the appName, allowing multiple servers to run side by side as long as they have unique appNames set.
The next block of code on lines 144 - 148 prints the path variables directly to the standard output, bypassing any logging systems, this is to guarantee the important path information always reaches standard output. The configuration file is parsed and loaded with the call to the LoadSettings method, similarly the logging system is initiated with a call to CreateDebugFile.The PrintEds3ModeValues method is used to ensure that the enumeration values are the same for the Java and C# versions of the server code. An easy way to guarantee this is to print the values out on server startup and compare them.
Finally some key class fields are initialized on lines 154 - 156. The players and gameRooms data structures are prepared and the gowStatic class field is set to an empty default value. That covers the basic constructor, let’s take a look at a constructor that supports some arguments.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

159 public Eds3Server(HandleEds3ServerComm CommH) {
160 appDir = rootDir + File.separator + appName;
161 configFilePath = appDir + File.separator + configFileName;
162 debugFilePath = appDir + File.separator + debugFileName;
163 this.commH = CommH;
164
165 System.out.println("");
166 System.out.println("App Dir: " + appDir);
167 System.out.println("Config Path: " + configFilePath);
168 System.out.println("Debug Path: " + debugFilePath);
169 System.out.println("Version: " + version);
170
171 LoadSettings();
172 CreateDebugFile();
173 PrintEds3ModeValues();
174
175 players = new Hashtable();
176 gameRooms = new ArrayList();
177 this.gowStatic = this.GetEmptyGameObjectWrapper();
178
179 if (this.commH != null) {
180 this.commH.HandleEds3ServerInit(this);
181 }
182 }
183

I should take a moment to mention that the server class extends the Runnable class, this allows the server code to run in it’s own thread. The overloaded constructor takes a HandleEds3ServerComm class instance as an argument. This class allows for the customization of the server’s behavior and although it can be set later on in the life cycle of the server class to fully take advantage of it we should pass it in as a constructor argument.
Notice that on line 180, if the argument passed in is not null then we run a customization method, HandleEds3ServerInit and pass it a reference to this server instance as an argument. Now the customization class can run code in response to the server initializing and that code can potentially access all public members of the server class.
This allows us to run special code in response to the server starting up. If you think about this in the context of a game you can imagine maybe we can start loading game resources, monitoring the network connection to see if we have internet access or any number of other things. This is an example of the customization features we mentioned earlier and depicts in a general sense how customization is taken care of in the client/server code implementation.
That takes care of the constructor review. Next we will move on and review the utility methods of the server class starting with the PrintEds3ModeValues method.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

185 public void PrintEds3ModeValues() {
186 Eds3ServerMode[] vals = Eds3ServerMode.values();
187 int len = vals.length;
188
189 for (int i = 0; i < len; i++) {
190 wr("Idx: " + i + " Eds3Mode Value: " + vals[i].ordinal());
191 }
192 }
193

As you can see this simple helper method creates an array of the enumeration entries of the Eds3ServerMode enumeration along with an expected length value for the array. Looping over the array elements we print out their ordinal values using the server’s debug logging method, wr.
Notice that this type of logging goes through the logging system and is not written directly to standard output. In this way the logs being written here may be subject to control by a global logging variable and not show up on standard output. If they do however make it to standard output we can easily compare the Java and C# versions of the server to make sure that their enumerations have assigned the same values to the same entries.
Without this check there is potential for the values to be different, after-all C# might change in a way that is different than Java and then a C# based server won’t understand a Java based client. So in order to prevent this we make sure the mode values match. The next helper method we’ll look at is the PrintConfig method, it’s short and sweet so don’t worry we’ll get into advanced methods soon enough.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

368 public boolean PrintConfig() {
369 System.out.println("==========CURRENT CONFIG===========");
370 System.out.println("Version: " + version);
371 System.out.println("Found port: " + this.port);
372 System.out.println("Found debug: " + this.debugOn);
373 System.out.println("Found connection_timeout_ms: " + this.timeout + " ms");
374 System.out.println("Found in_buffer_size: " + this.inBufferSize + " bytes");
375 System.out.println("Found out_buffer_size: " + this.outBufferSize + " bytes");
376
377 if (GetIsNetworkAvailable() == true) {
378 GetLocalIPAddress();
379 return true;
380 } else {
381 System.out.println("Network connection not found.");
382 return false;
383 }
384 }
385

The PrintConfig method simply writes some important networking information to standard output. Again, notice the choice of using direct standard output write calls here. If a network connection is available the GetLocalIPAddress method is called and a true value is returned. If not, a message indicating no network connection has been found is printed out and a false value is returned. In this way the PrintConfig method also let’s us know if the network is available at the time it is called.
One other thing we should notice about the PrintConfig method is the simplicity and singularity of focus of its design. This is good practice when writing any method but ever more so for helper methods. Let’s take a look at two more helper methods that touch upon some of the network class fields used by the server class.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

387 public boolean GetIsNetworkAvailable() {
388 try {
389 URL url = new URL(TEST_URL);
390 HttpURLConnection con = (HttpURLConnection) url.openConnection();
391 con.connect();
392
393 if (con.getResponseCode() == 200) {
394 return true;
395 } else {
396 return false;
397 }
398 } catch (Exception e) {
399 e.printStackTrace();
400 }
401 return false;
402 }
403

The GetIsNetworkAvailable helper method opens an HTTP connection to the TEST_URL that was defined in the server’s static fields. If the connection can be established and the connection returns an HTTP response code of 200, which indicates a successful request, the method returns true otherwise it returns false. This method fires off an HTTP request so we should be mindful of how we use it, it wouldn’t be efficient to run this method frequently.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

415 public String GetLocalIPAddress() {
416 try {
417 Enumeration e = NetworkInterface.getNetworkInterfaces();
418 while (e.hasMoreElements()) {
419 NetworkInterface n = (NetworkInterface) e.nextElement();
420 Enumeration ee = n.getInetAddresses();
421 while (ee.hasMoreElements()) {
422 InetAddress i = (InetAddress) ee.nextElement();
423 return i.toString();
424 }
425 }
426 } catch (Exception e) {
427 e.printStackTrace();
428 }
429 return "0.0.0.0";
430 }
431

Take a look at this helper method. Doesn’t it look familiar? It’s a similar method to the static class method we covered earlier, GetLocalIPAddressStat, but there are some issues here we should mention. The first thing I should mention is that this method behaves differently than its static counterpart in some cases.
For instance a computer with multiple network interfaces would return a different IP address using the non-static method because it loops over network interfaces and assigned IP addresses in an unknown ordering and returns the first IP address found. The static method simply returns the default adapter’s IP address.
So why let this blatant issue persist you ask? Well it turns out it’s not such a big deal. We will most likely rely on setting the IP address directly via the config file or command line arguments. The next two helper methods we will review together, they help provide information on the status of the server.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

432 public void PrintState() {
433 System.out.println("==========CURRENT STATE===========");
434 System.out.println("GameRooms: " + this.gameRooms.size());
435 System.out.println("TotalPlayers: " + this.CountTotalPlayers());
436 }
437
438 private int CountTotalPlayers() {
439 int total = 0;
440 int len = gameRooms.size();
441 for (int i = 0; i < len; i++) {
442 total += gameRooms.get(i).players.size();
443 }
444 return total;
445 }
446

The PrintState method is simple, it just prints to standard output the number of game rooms in use as well as the number of active players on the server. To calculate the total number of players, i.e. the CountTotalPlayers method, we loop over the game rooms and count the number of players in each game room.
This wraps up the review of helper methods for the server class. Take the time to go over any methods that don’t seem clear to you. You may also want to take a look at the log file methods that take care of opening, setting up, and closing the debug log file.
We won’t be reviewing getter and setter methods, as I mentioned earlier, since they are very simple and direct. Take a moment to look them over they should be familiar in that we’ve reviewed the underlying class fields they interact with.
That brings us to the network helper method section. We’ll be reviewing these class methods next. Remember we are still covering the main classes of the server side implementation, specifically the Eds3Server class. The network helper methods don’t control the main network functionality of the server class but they do support it. Let’s take a look and see what the code looks like as we further our understanding of the server class.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

651 private synchronized int GetNewDunGenSeed() {
652 return (int) (Math.random() * Eds3Server.DUN_GEN_SEED_ERROR) - 1;
653 }
654

We’ll start off with the simple method written above. As mentioned before the client/server communication process uses a request/response network interaction paradigm initiated by the client. As the client starts up and initializes its network support the first request the client sends out is a request for a unique level identifier referred to in this text as a dunGenSeed.
You can see from the code above that the dunGenSeed is a randomly generated integer value. Depending on the game you implement, this network interaction could be significant and be used to seed a procedural level generator. In other cases it may just be used to get a unique ID value for the game room of the current network game.
Another set of important network helper methods are those that can tell use if a connecting client is new or already exists in a game room on our server. Let’s take a look at the IsNewPlayer and IsExistingPlayer network helper methods outlined next.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

730 private synchronized boolean IsNewPlayer(String ip) {
731 if (this.players != null) {
732 if (this.players.containsKey(ip)) {
733 return false;
734 } else {
735 return true;
736 }
737 } else {
738 this.players = new Hashtable();
739 return true;
740 }
741 }
742

The IsNewPlayer helper method, listed previously, is fairly direct. The method checks the players data structure for a matching player IP string, this IP string can include the client port as we discussed earlier. If the player’s connection IP doesn’t exist or if the players data structure hasn’t been initialized the method returns false, otherwise the player has been found and a true value is returned.
The corresponding method, IsExistingPlayer, is up for review next. Let’s take a look.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

743 private synchronized boolean IsExistingPlayer(String ip) {
744 return !IsNewPlayer(ip);
745 }
746

This method is very straight-forward. Basically the inverse of the IsNewPlayer method is returned. So if the player is new then the IsExistingPlayer method returns false. Can you see from these helper methods why we chose to store player data directly in the class field players as well as indirectly as part of the class fields of the GameRoom class? Without the players ArrayList we would need to search each game room for the player in question.
The approach above is more efficient, and it only costs us moderate overhead maintaining the state of the players ArrayList. If that isn’t reason enough we have to realize that each time a client connects to the server we need to determine if they are a new player or a returning player.
You should begin to notice that the server class does a bit more than just communicate back and forth with a client or two. The server class manages a set of game rooms, each representing an active network game, and also takes care of assigning players to certain game rooms and syncing player data for those players that are in the same game room. Because we are relying on IP address and port values as a client’s ID string we can guarantee that players are unique with regard to their network end-point.
The next network helper method we’ll take a look at is the AssignGameRoom method, outlined next.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

655 private synchronized boolean AssignGameRoom(Player p) {
656 if (p == null) {
657 return false;
658 }
659
660 int len = this.gameRooms.size();
661 GameRoom r = null;
662 boolean found = false;
663 int id = 0;
664 String ip = p.ip;
665 int port = p.port;
666
667 for (int i = 0; i < len; i++) {
668 r = this.gameRooms.get(i);
669 if (r != null && r.players.containsKey(p.ip)) {
670 wr(ip + ":" + port + ": Player already exists.");
671 return true;
672 }
673
674 if (r != null && r.players.size() < this.maxGameRoomPlayers && !found) {
675 wr(ip + ":" + port + ": Player doesn't already exist, but room does.");
676 id = i;
677 found = true;
678 }
679 }
680
681 if (!found) {
682 if (this.gameRooms.size() < this.maxGameRooms) {
683 //register a new room
684 wr(ip + ":" + port + ": Register a new game room.");
685 r = new GameRoom();
686 r.serverVersion = this.version;
687 r.dunGenSeed = this.GetNewDunGenSeed();
688 r.id = this.gameRooms.size();
689 r.eds3server = this;
690 this.gameRooms.add(r);
691
692 //set player info
693 p.roomId = this.gameRooms.indexOf(r);
694 r.players.put(p.ip, p);
695
696 p.id = r.players.get(p.ip).hashCode();
697 p.spawnId = r.GetSpawnId();
698
699 //register player with room
700 this.players.put(p.ip, r);
701 } else {
702 wr(ip + ":" + port + ": Max rooms reached.");
703 r = null;
704 p.roomId = -1;
705 p.id = -1;
706 p.spawnId = -1;
707 }
708 } else {
709 //get existing room
710 wr(ip + ":" + port + ": Get existing game room.");
711 r = gameRooms.get(id);
712
713 //set player info
714 p.roomId = this.gameRooms.indexOf(r);
715 r.players.put(p.ip, p);
716 p.id = r.players.get(p.ip).hashCode();
717 p.spawnId = r.GetSpawnId();
718
719 this.players.put(p.ip, r);
720 }
721
722 if (r != null) {
723 wr(ip + ":" + port + ": Assigning player to room: " + p.roomId + " player id: " + p.id);
724 return true;
725 } else {
726 return false;
727 }
728 }
729

It may seem a little confusing looking at these helper methods outside of any context but it’s much less confusing than looking at the main methods first. As you progress through the text your experience will grow and the code will make more sense and be easier to absorb. Let’s review the code listed above.
The AssignGameRoom method takes an instance of the Player class as an argument and after validating the passed in argument, lines 656 - 658, a number of local variables are declared and initialized with starting values on lines 660 - 665. The action really starts in the for loop on line 667 where two tasks are accomplished. The first task requires us to check each game room to see if our player already exists. If we find that a game room contains the player we’re looking for we can return true and exit because our work is already done.
The second task we need to perform is to find the first game room, if any, that a new player can be added to. Because this could occur in any game room we need to check each active game room on the server. Since we are already scanning through all the game rooms we can see to both tasks at the same time. There are two situations that can exist that would cause the loop to complete without the method returning in the for loop.
The first situation is that an existing game room with space for a new player is found. The second situation is that no matching player and no available game rooms are found. If no game room with space for a new player is found and there is enough space to add a new game room to the server we create one. Register it with the list of active game rooms, then add the new player to it.
If an existing game room with player space is found we simply add the new player to that game room. Upon exiting the loop if a valid game room exists with the given player in it, the method returns true otherwise it returns false.
When a client requests a new dunGenSeed, think game room ID, the server takes care of placing the player in an existing game room, or creates a new game room and places the player in it. The GameRoom is an association of players, UDP clients running in a video game. And game rooms are objects in memory on the backend video game server with associated players. Notice how loose this association is?
The server doesn’t care, for lack of a better word, what network game is actually running. The server performs simple and efficient actions keeping track of active game rooms and players. We’ll finish up the network helper method review before covering the main network methods.
A quick note on the use of the synchronized keyword. We want to synchronize methods when we’re running in a multi-threaded environment. For instance adding a player to a game room is an action that can affect other asynchronously executing operations that could be occurring simultaneously. Using the synchronized keyword, in Java anyhow, ensures that multiple threads processing client requests will interact cleanly with shared class fields like gameRooms and player.
In the C# version of the code we don’t use the synchronized keyword, we use the lock method to protect class fields during access in a multi-threaded environment. The next helper method we’ll review is the ProcessCmd method. This method is used to query the server class for information about itself and the games running on the server. Let’s take a look at some code.
Eds3Server -> com.middlemind.Eds3.Eds3Server.java

747 public synchronized void ProcessCmd(String cmd) {
748 wr("server processCmd: " + cmd);
749 if (cmd != null) {
750 cmd = cmd.toLowerCase().trim();
751
752 if (cmd.equals("help")) {
753 wr("q: Quit server.");
754 wr("netstats: Print general network stats.");
755 wr("listrooms: Lists current game rooms.");
756 wr("listplayers-[game room index]: List players in the given game room index.");
757 wr("listlagplayers-[game room index]: List network lag players in the given game room index.");
758
759 } else if (cmd.equals("q")) {
760 wr("Stopping server...");
761 this.Stop();
762
763 } else if (cmd.equals("netstats")) {
764 wr("TotalNetworkDataIn: " + this.totalDataIn);
765 wr("TotalNetworkMsgsIn: " + this.totalMsgsIn);
766 wr("TotalNetworkDataOut: " + this.totalDataOut);
767 wr("TotalNetworkMsgsOut: " + this.totalMsgsOut);
768
769 } else if (cmd.equals("listrooms")) {
770 int len = this.gameRooms.size();
771 wr("Scanning " + len + " rooms...");
772 for (int i = 0; i < len; i++) {
773 wr("RoomIdx: " + (i + 1));
774 wr(this.gameRooms.get(i).toString());
775 }
776
777 } else if (cmd.indexOf("listplayers") != -1) {
778 String[] s = null;
779 if (cmd.indexOf("-") != -1) {
780 s = cmd.split("-");
781 int idx = Integer.parseInt(s[1]);
782 GameRoom r = this.gameRooms.get(idx);
783 Player p = null;
784 int cnt = 0;
785 if (r != null) {
786 for (String key : r.players.keySet()) {
787 p = r.players.get(key);
788 wr("PlayerIdx: " + (cnt + 1));
789 wr(p.toString());
790 cnt++;
791 }
792 }
793 } else {
794 wr("No room specified...");
795 }
796
797 } else if (cmd.indexOf("listlagplayers") != -1) {
798 String[] s = null;
799 if (cmd.indexOf("-") != -1) {
800 s = cmd.split("-");
801 int idx = Integer.parseInt(s[1]);
802 GameRoom r = this.gameRooms.get(idx);
803 int cnt = 0;
804 if (r != null) {
805 for (Player p : r.lagPlayers) {
806 wr("LagPlayerIdx: " + (cnt + 1));
807 wr(p.toString());
808 cnt++;
809 }
810 }
811 } else {
812 wr("No room specified...");
813 }
814
815 } else {
816 wr("Nothing to do...");
817 }
818 }
819 }
820

The last network helper method left to review is the ProcessCmd method listed previously. This method let’s you send commands to the server, from it’s Terminal, while it’s running. Take a moment to recall the class fields we’ve reviewed so far. Remember we mentioned that the server implements the Runnable interface? There were also some whispers of an asynchronous mode. Let’s take a moment to explain things a bit.
When the server is started in a Terminal it begins execution on the application thread. In order to guarantee the server is always available to receive incoming messages we will be running some code in a thread distinct from the application thread, also referred to as the main execution thread. This means our application thread is free to process user input because all of the networking takes place on an independent thread.
For instance if we run the server in a console, as demonstrated in Part 3, we can have the console read in user input and pass that text on to the server by calling the ProcessCmd class method. Some examples of this feature would be sending a ‘q’ argument to the ProcessCmd method to initiate a clean server shutdown. A second example would be to send a ‘netstats’ argument to the ProcessCmd method to display some general network statistics.
Take a moment to review some of the other commands supported. You should find the material to be familiar, as we’ve seen these class fields before. This brings us to the end of this part of the book. Normally we would proceed directly to the main network method review but I want to cover some important supporting classes first. These classes will come up in the Part 6: Server Code: Main Classes 2 review so having some background with them will be helpful.
	IDE
	An integrated development environment (IDE) is a software suite that consolidates basic tools required to write and test software.

	Java
	A general-purpose computer programming language designed to produce programs that will run on any computer system.

	Packages
	A package is a namespace that organizes a set of related classes and interfaces. Conceptually you can think of packages as being similar to different folders on your computer. You might keep HTML pages in one folder, images in another, and scripts or applications in yet another. Because software written in the Java programming language can be composed of hundreds or thousands of individual classes, it makes sense to keep things organized by placing related classes and interfaces into packages.

	Namespaces
	A namespace is a declarative region that provides a scope to the identifiers (the names of types, functions, variables, etc) inside it. Namespaces are used to organize code into logical groups and to prevent name collisions that can occur especially when your code base includes multiple libraries.

	Classes
	In object-oriented programming, a class is an extensible program-code-template for creating objects, providing initial values for state (member variables) and implementations of behavior (member functions or methods).

	C#
	C# is a hybrid of C and C++, it is a Microsoft programming language developed to compete with Sun's Java language. C# is an object-oriented programming language used with XML-based Web services on the .NET platform and designed for improving productivity in the development of Web applications.

	UDP
	User Datagram Protocol (UDP) is part of the Internet Protocol suite used by programs running on different computers on a network. UDP is used to send short messages called datagrams but overall, it is an unreliable, connectionless protocol.

	Loopback Network Interface
	Loopback address is a special IP number (127.0.0.1) that is designated for the software loopback interface of a machine.

	Network Interactions
	Network interactions are client initiated request/response messages.

	Client/Server
	In this text client/server refers to the code that runs a network client and a network server that communicate using the UDP/IP, universal datagram packet protocol, with IP based network addresses.

	Cross-platform
	Able to be used on different types of computers or with different software packages.

	TCP
	TCP (Transmission Control Protocol) is a standard that defines how to establish and maintain a network conversation via which application programs can exchange data. TCP works with the Internet Protocol (IP), which defines how computers send packets of data to each other.

	Network Game Object
	A network game object is a local game object that the current player is responsible for publishing via an object publication interaction to the other players in the game.

	Request/Response Model
	In this text the request/response model refers to the nature of network communication. The client initiates communication over UDP with a request and the server responds back with a response.

	Static Class Members
	When we declare a member of a class as static it means no matter how many objects of the class are created, there is only one copy of the static member. A static member is shared by all objects of the class. All static data is initialized to zero when the first object is created, if no other initialization is present.

	Static Class Fields
	A static field is in programming languages is the declaration for a variable that will be held in common by all instances of a class. The static modifier determines the class variable as one that will be applied universally to all instances of a particular class.

	L2 Object Publication
	A specific object publication interaction mode that sends along position data along with the object publication request and supports distance testing and aggregate return messages. The distance testing will prevent returning data from a player who is too far away from the publication request initiating player. Also, the return messages are aggregated into as few responses as possible leading to more efficient network communication.

	Class Fields
	At its most basic, a field is a class level variable. This means it represents a value, such as text or a numeric value that belongs to an instance of a class. Static class fields belong to the class itself or in other words all instances of the class reference the same static class fields.

	Data Structure
	In computer science, a data structure is a data organization, management, and storage format that enables efficient access and modification.

	HTTP
	HTTP means HyperText Transfer Protocol. HTTP is the underlying protocol used by the World Wide Web and this protocol defines how messages are formatted and transmitted, and what actions Web servers and browsers should take in response to various commands.

	HTTP Response Code
	HTTP response status codes indicate whether a specific HTTP request has been successfully completed. Responses are grouped in five classes: informational responses, successful responses, redirects, client errors, and servers errors.

	Boxing/Unboxing
	Boxing is the manual conversion between the primitive types and their corresponding object wrapper classes. For example, converting an int to an Integer, a double to a Double, and so on. If the conversion goes the other way, this is called unboxing.

	Message Identifier
	The value of the first byte of a network request or response.

	ArrayList
	The ArrayList class is a resizable array, which can be found in the java.util package.

	Hashtable
	Hashtable was part of the original java.util and is a concrete implementation of a Dictionary. However, Java 2 re-engineered Hashtable so that it also implements the Map interface. Thus, Hashtable is now integrated into the collections framework. It is similar to HashMap, but is synchronized. Like HashMap, Hashtable stores key/value pairs in a hash table. The C# equivalent used in this text is the Dictionary class.

	IDE
	An integrated development environment (IDE) is a software suite that consolidates basic tools required to write and test software.

	Index
	Section 3 - Part 3: Netbeans IDE Introduction

	Java
	A general-purpose computer programming language designed to produce programs that will run on any computer system.

	Index
	Section 3 - Part 3: Netbeans IDE Introduction

	Packages
	A package is a namespace that organizes a set of related classes and interfaces. Conceptually you can think of packages as being similar to different folders on your computer. You might keep HTML pages in one folder, images in another, and scripts or applications in yet another. Because software written in the Java programming language can be composed of hundreds or thousands of individual classes, it makes sense to keep things organized by placing related classes and interfaces into packages.

	Index
	Section 3 - Part 3: Netbeans IDE Introduction

	Namespaces
	A namespace is a declarative region that provides a scope to the identifiers (the names of types, functions, variables, etc) inside it. Namespaces are used to organize code into logical groups and to prevent name collisions that can occur especially when your code base includes multiple libraries.

	Index
	Section 3 - Part 3: Netbeans IDE Introduction

	Classes
	In object-oriented programming, a class is an extensible program-code-template for creating objects, providing initial values for state (member variables) and implementations of behavior (member functions or methods).

	C#
	C# is a hybrid of C and C++, it is a Microsoft programming language developed to compete with Sun's Java language. C# is an object-oriented programming language used with XML-based Web services on the .NET platform and designed for improving productivity in the development of Web applications.

	UDP
	User Datagram Protocol (UDP) is part of the Internet Protocol suite used by programs running on different computers on a network. UDP is used to send short messages called datagrams but overall, it is an unreliable, connectionless protocol.

	Index
	Section 3 - Part 3: Netbeans IDE Introduction

	Loopback Network Interface
	Loopback address is a special IP number (127.0.0.1) that is designated for the software loopback interface of a machine.

	Index
	Section 3 - Part 3: Netbeans IDE Introduction

	Network Interactions
	Network interactions are client initiated request/response messages.

	Index
	Section 3 - Part 3: Netbeans IDE Introduction

	Client/Server
	In this text client/server refers to the code that runs a network client and a network server that communicate using the UDP/IP, universal datagram packet protocol, with IP based network addresses.

	Index
	Section 4 - Part 4: Server Code: Main Classes 1

	Cross-platform
	Able to be used on different types of computers or with different software packages.

	Index
	Section 4 - Part 4: Server Code: Main Classes 1

	TCP
	TCP (Transmission Control Protocol) is a standard that defines how to establish and maintain a network conversation via which application programs can exchange data. TCP works with the Internet Protocol (IP), which defines how computers send packets of data to each other.

	Index
	Section 4 - Part 4: Server Code: Main Classes 1

	Network Game Object
	A network game object is a local game object that the current player is responsible for publishing via an object publication interaction to the other players in the game.

	Index
	Section 4 - Part 4: Server Code: Main Classes 1

	Request/Response Model
	In this text the request/response model refers to the nature of network communication. The client initiates communication over UDP with a request and the server responds back with a response.

	Index
	Section 4 - Part 4: Server Code: Main Classes 1

	Static Class Members
	When we declare a member of a class as static it means no matter how many objects of the class are created, there is only one copy of the static member. A static member is shared by all objects of the class. All static data is initialized to zero when the first object is created, if no other initialization is present.

	Index
	Section 4 - Part 4: Server Code: Main Classes 1

	Static Class Fields
	A static field is in programming languages is the declaration for a variable that will be held in common by all instances of a class. The static modifier determines the class variable as one that will be applied universally to all instances of a particular class.

	Index
	Section 4 - Part 4: Server Code: Main Classes 1

	L2 Object Publication
	A specific object publication interaction mode that sends along position data along with the object publication request and supports distance testing and aggregate return messages. The distance testing will prevent returning data from a player who is too far away from the publication request initiating player. Also, the return messages are aggregated into as few responses as possible leading to more efficient network communication.

	Index
	Section 4 - Part 4: Server Code: Main Classes 1

	Class Fields
	At its most basic, a field is a class level variable. This means it represents a value, such as text or a numeric value that belongs to an instance of a class. Static class fields belong to the class itself or in other words all instances of the class reference the same static class fields.

	Index
	Section 4 - Part 4: Server Code: Main Classes 1

	Data Structure
	In computer science, a data structure is a data organization, management, and storage format that enables efficient access and modification.

	Index
	Section 4 - Part 4: Server Code: Main Classes 1

	HTTP
	HTTP means HyperText Transfer Protocol. HTTP is the underlying protocol used by the World Wide Web and this protocol defines how messages are formatted and transmitted, and what actions Web servers and browsers should take in response to various commands.

	Index
	Section 4 - Part 4: Server Code: Main Classes 1

	HTTP Response Code
	HTTP response status codes indicate whether a specific HTTP request has been successfully completed. Responses are grouped in five classes: informational responses, successful responses, redirects, client errors, and servers errors.

	Index
	Section 4 - Part 4: Server Code: Main Classes 1

	Boxing/Unboxing
	Boxing is the manual conversion between the primitive types and their corresponding object wrapper classes. For example, converting an int to an Integer, a double to a Double, and so on. If the conversion goes the other way, this is called unboxing.

	Message Identifier
	The value of the first byte of a network request or response.

	ArrayList
	The ArrayList class is a resizable array, which can be found in the java.util package.

	Index
	Section 4 - Part 4: Server Code: Main Classes 1

	Hashtable
	Hashtable was part of the original java.util and is a concrete implementation of a Dictionary. However, Java 2 re-engineered Hashtable so that it also implements the Map interface. Thus, Hashtable is now integrated into the collections framework. It is similar to HashMap, but is synchronized. Like HashMap, Hashtable stores key/value pairs in a hash table. The C# equivalent used in this text is the Dictionary class.

	Index
	Section 4 - Part 4: Server Code: Main Classes 1

 Table Of Contents

 		
 Title

		
 Copyright Info

		
 Dedication

		
 Part 1: Preface

		
 Part 2: Introduction

		
 Part 3: Netbeans IDE Introduction

		
 Part 4: Server Code: Main Classes 1

		
 Glossary

 		
 Start

		
 Glossary

