
Video Game UDP
Client/Server
Design and
Implementation

First Edition

With a cross platform, networked,
example game in Unity 3D

Brian A. Ree

Video Game UDP Client /
Server Design and
Implementation
 
With a cross platform, networked,
example game in Unity 3D
By: Brian A. Ree

1

Copyright Info

Video Game UDP Client / Server Design and Implementation, First Edition 
With a cross platform, networked, example game in Unity 3D

Copyright © 2019 Brian A. Ree and Middlemind Games

All distribution and modification rights are reserved. Please contact Middlemind Games at
info@middlemindgames.com for any inquiries regarding this text.

This book is distributed in the hope that it will be a useful learning guide or stepping stone
for video game developers seeking to create networked video games of their own. This
book is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. That being said much dili-
gent work was put into the Java and C# UDP client/server code as well as the Unity 3D ex-
ample game.

Middlemind Games, LLC  
info@middlemindgames.com 
http://www.middlemindgames.com

VERSION: 20191908-000

2

mailto:info@middlemindgames.com?subject=UDP%20Text%20Inquiry
mailto:info@middlemindgames.com?subject=UDP%20Text%20Inquiry
mailto:info@middlemindgames.com
mailto:info@middlemindgames.com
http://www.middlemindgames.com
http://www.middlemindgames.com

Dedication

This book is dedicated simply to all those individuals who wake up every day and truly try.
Don’t worry you’ll get there, just don’t give up.

3

Part 1: Preface

Why was This Book Written 
This book was written as the culmination of a sustained effort to make video game client/
server software more available to the small, independent, software developer. This book is
an attempt to review and explain a simple, efficient, customizable, cross-platform UDP
client/server implementation.

The pages of this book document and detail the design and implementation of the client/
server software and the example Unity 3D game so that others might learn from it and use
the knowledge to further this project or their own. Lastly, it is an attempt to empower those
who are new to coding, video game development, or network software design so they might
achieve their goals faster by giving them a solid tool to build their network games with.

What is the Goal of This Book  
The goal of this book is to teach the reader about a specific cross-platform UDP client/
server implementation so that the reader can utilize and control the provided software to
suite their needs, or to use the knowledge as a basis for their own software.

The reader should also gain some experience with Java, Netbeans IDE, and socket pro-
gramming through the review of the code throughout this book. The software has been writ-
ten in Java and C#, both code bases are provided, but for the sake of brevity only the Java
version is covered in this text.

The reader will also be exposed to a larger, cross-platform software development project
and the inherent experiences that entails. Last but not least the reader will gain some expe-
rience with Unity 3D, C#, Visual Studio Community Edition, and to some extent setting up a
backend UDP server for the included Unity 3D example game, depending on the needs
and resources of the reader.

Who is This Book For 
This book is for software developers with beginner to intermediate level programming expe-
rience who want to learn more about video game network programming. Developers with
beginner level experience may find the code somewhat challenging but since fully func-

4

tional software is the basis for this code review those developers should be able to keep up
with a little effort.

That being said, software developers with intermediate to advanced level programming ex-
perience may find the book and its software to have value otherwise not originally intended.
It should also be said that while the book details the code driving a UDP client/server under
the context of writing a networked video game, the target implementation does not have to
be a video game and the book should still have value in this circumstance.

What are the Requirement for This Book  
This book requires that you have access to at least one computer and that you can install
and run software on said computer. You should have a working familiarity with the computer
you will be using. Also, familiarity with the command line interface for your environment,
Mac or Windows, is useful but not required. While I don’t specifically provide Linux instruc-
tions for certain aspects of the included software, Linux users should be able to easily fol-
low and adjust the Mac instructions. There are places in this book where it will be helpful to
have more than one computer, for instance when setting up the backend server, these will
be limited as much as possible to keep this text as accessible as possible.

How is This Book Organized 
This book is organized into the following parts.

Section Description
Part 1 Preface
Part 2 Introduction
Part 3 Netbeans IDE Introduction
Part 4 Server Code: Main Classes 1
Part 5 Client/Server Code: Supporting Classes
Part 6 Server Code: Main Classes 2
Part 7 Client/Server Demo and Log Trace
Part 8 Client Code: Main Classes
Part 9 Customization Interfaces
Part 10 Unity 3D Introduction
Part 11 Unity 3D Example Game: Prefab Review
Part 12 Unity 3D Example Game: Helper Classes
Part 13 Unity 3D Example Game: Main Classes

5

A brief description of each part of this text is listed below.

Part 1: Preface 
Addresses the scope and purpose of this book as well as its overall structure and conven-
tions.

Part 2: Introduction 
Introduces the subject of the book and addresses the path of knowledge the book lays out,
its purpose and intent.

Part 3: Netbeans IDE Introduction 
A brief introduction to the Netbeans IDE for Java software development. This section also
includes information on how to check your current Java configuration, the installation of
Java SE, and on the installation of the JRE. This part of the book closes with a brief demon-
stration of the software including the Unity 3D example game.

Part 4: Server Code: Main Classes 1 
The first half of a detailed review of the main classes that power the server side of the UDP
client/server implementation.

Part 5: Client/Server Code: Supporting Classes  
A detailed review of the supporting classes used by the UDP server and client.

Part 6: Server Code: Main Classes 2 
The second half of a detailed review of the main classes that power the server side of the
UDP client/server implementation.

Part 7: Client/Server Demo and Log Trace 
A review of the client/server code from the perspective of the console demonstration mode
with a focus on reviewing the server and client logs to get a deeper understanding of the
code reviewed thus far.

Part 8: Client Code: Main Classes  
Building on the knowledge gained from the server code review and the client/server log
trace in Part 7 this section of the book contains a detailed look at the UDP client code.

6

Part 9: Customization Interfaces  
An in-depth review of the customization interfaces used to extend the functionality of the
client/server software.

Part 10: Unity 3D Introduction 
An introduction to Unity 3D including an overview of the installation of the software. A brief
UI overview, and resources for understanding basic aspects of the Unity 3D API.

Part 11: Unity 3D Example Game: Prefab Review 
The start of an in-depth review of the Unity 3D example game covering the prefabs, mod-
els, and important components that make up the game’s foundation.

Part 12: Unity 3D Example Game: Helper Classes 
Building on the material covered in Part 11 this section covers important helper classes
meant to build up your knowledge and familiarity with the Unity 3D example project and pre-
pare for a review of the main classes that power the game.

Part 13: Unity 3D Example Game: Main Classes 
A detailed review of the main classes that power the Unity 3D example game including the
use of, and customization of, the UDP client/server code.

Part 14: Conclusion: Playing The Example Game  
A conclusion to the code review journey wrapping things up with some detailed instructions
on how to run the example game on Windows and Mac in different configurations.

Conventions Used in This Book  
The following typographical conventions are used in this book.

Italic Font: 
Used to display URLs and email addresses.

Mono Font Bold:  
Used to display proper nouns such as class names, class members, variables, files, fold-
ers, etc.

7

Smaller Mono Font: 

Used to display sections of code for review.

Accessing Code and Projects Online  
You can access the latest version of the code for each project here,
http://www.middlemindgames.com/udpbook/. Please be sure to check for updates to the dif-
ferent projects periodically. Part 14 of this book contains detailed instructions on how to
download and run the game in different configurations and on different systems.

Models and Artwork  
The models and artwork used to power the Unity 3D example game are attributed to: Unity
Games by Tutorials: Make 4 Complete Unity Games from Scratch Using C#, available at
https://www.raywenderlich.com. Check out the site it has some great stuff! You can buy a
copy of the book I read that inspired me to write the code and this code review manual at
https://www.amazon.com. I found it to be a solid resource.

8

http://www.middlemindgames.com/udpbook/
http://www.middlemindgames.com/udpbook/
https://www.raywenderlich.com
https://www.raywenderlich.com
https://www.amazon.com/dp/1942878567/ref=cm_sw_em_r_mt_dp_U_JeKjDbV8H74PT
https://www.amazon.com/dp/1942878567/ref=cm_sw_em_r_mt_dp_U_JeKjDbV8H74PT

Part 2: Introduction

Have you ever wanted to create your own video game? have you ever wanted to expand
your simple single player video game to include network support? If either of these two
questions strikes a coord with you or if you’ve spent more time researching UDP network
programming than actually writing code then this book is for you.

Having written software, including the occasional video game, for over 15 years now I’m
still shocked at how things in the world of software work. It would seem that although things
have gotten easier they aren’t always as easy as we’d like them to be. When confronted
with adding network support to a single player game I’d been messing with in Unity 3D I
found myself once again at the bottom of the learning curve.

I was faced with either having to research and learn Unity 3D’s generic network support,
which was in the process of being updated to a new implementation, or to research and
learn UDP socket server design an implementation with video games in mind. I chose the
latter and decided to document the resulting code and example Unity 3D game in this text.

It turns out that implementing the canned networking code that Unity 3D offered wasn’t go-
ing to work well with my procedurally generated levels, and good luck writing network sup-
port into the FPS package I was using. I thought that things should be easier. I felt that I
should be able to plug my game code into some networking library and bam, a networked
video game, and why not.

The problem I ran into was that high level solutions like the FPS package I was using were
too specific, not easy to extend, and the high level network support built into Unity 3D re-
quired me to heavily adjust my core game implementation. What I needed was something
low level and general so I wrote a cross-platform UDP client/server implementation that is
simple, efficient, and flexible.

The code actually doesn’t care if it is being used to power a game it is simply a UDP client/
server implementation that passes GameObjectWrapper data, more on this to come, from
client to server and on to other clients in the game. This book is the culmination of that ef-

9

fort and provides a detailed review of the logic, design, and implementation of the UDP
client/server code.

To demonstrate the use of the code an example Unity 3D third person shooter, networked,
video game is included and reviewed in detail. The solution uses the Java version of the
backend UDP server, the C# version of the UDP client, and a C# based Unity 3D project,
including all code and precompiled binaries that will run on Mac, Linux or Windows.

This book includes the full source code to the Java and C# implementations of the UDP
client/server software, the code was implemented on both platforms and is cross-platform
compatible. This book focuses mainly on the Java version of the code but you can follow
along using the C# version with slightly more effort as the line numbers will no longer match
up. I hope that you get great use out of the code, extend it, enhance it, and make it your
own. Anything you need to do to get your project moving! Enjoy!

10

Part 3: Netbeans IDE Introduction

For this part of the book you’ll need your computer. Fire it up and head over to
https://netbeans.apache.org/download/index.html to download the latest version of the Net-
beans IDE. Below is a screenshot depicting the Netbeans IDE version 11.0, the latest at the
time of this writing.

Click the download link shown above or you can just use this URL and navigate there di-
rectly, https://netbeans.apache.org/download/nb110/nb110.html.

11

https://netbeans.apache.org/download/index.html
https://netbeans.apache.org/download/index.html
https://netbeans.apache.org/download/nb110/nb110.html
https://netbeans.apache.org/download/nb110/nb110.html

Click the link next to the “Binaries” label, or you can just use this URL,
https://www.apache.org/dyn/closer.cgi/incubator/netbeans/incubating-netbeans/incubating-1
1.0/incubating-netbeans-11.0-bin.zip.

You’ll be taken to a download page with download URLs and mirror sites. Choose one and
allow the zip file to finish downloading. Completing the installation of the IDE should set you

12

https://www.apache.org/dyn/closer.cgi/incubator/netbeans/incubating-netbeans/incubating-11.0/incubating-netbeans-11.0-bin.zip
https://www.apache.org/dyn/closer.cgi/incubator/netbeans/incubating-netbeans/incubating-11.0/incubating-netbeans-11.0-bin.zip
https://www.apache.org/dyn/closer.cgi/incubator/netbeans/incubating-netbeans/incubating-11.0/incubating-netbeans-11.0-bin.zip
https://www.apache.org/dyn/closer.cgi/incubator/netbeans/incubating-netbeans/incubating-11.0/incubating-netbeans-11.0-bin.zip

up with a recent version of the Java runtime environment. Once the installation has com-
pleted, but before we start up the IDE, let’s check to see if a newer version of Java’s JRE
has come out.

Go to https://www.java.com/en/download/installed.jsp in your favorite browser and follow
the instructions to verify and update, if need be, your Java runtime environment. You should
see a web page similar to the one depicted below, which was taken at the time of this writ-
ing. If the URL listed above no longer exists use your favorite search engine to look up the
best way to verify Java on your computing platform.

You’ll also need to install Java SE. The URL at the time of this writing is as follows,
https://www.oracle.com/technetwork/java/javase/downloads/index.html. You can always use
your favorite search engine to look up how to install the latest versions of the JRE and Java
SE. The screenshot below depicts the current download page for Java SE. Select the cor-
rect download for your computing environment.

13

https://www.java.com/en/download/installed.jsp
https://www.java.com/en/download/installed.jsp
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html

Once you’re done with this step and you’re all updated and ready to go fire up the Net-
beans IDE you just finished installing. Close any first run, tip of the day, or project load
popups, we’ll check for updates first so you can see how it’s done.

On Windows go to the Help menu and select the Check for Updates option to perform
the necessary checks. On a Mac go to the application menu and select the About option,
click Check for Updates on the subsequent popup screen. This process should be per-
formed periodically to ensure you have the latest stable version of the IDE installed.

Create a new project by selecting New Project from the File menu on Windows or Mac.
Familiarize yourself with the ins and outs of creating a new Java project. For basic Java pro-
jects use the Java with Ant new project category. You can create both basic Java applica-
tion projects and Java class library projects from this category. Pay close attention to the
project directory and default JRE settings when creating a new project. Go ahead and cre-
ate a new empty project with the name of your choice, we’ll be using it to demonstrate
some basic IDE functionality.

14

Once your project is loaded, and you’re familiar with the project creation process and file-
system paths, expand your project so that you can see the Source Packages folder in the
left hand navigation pane. Right click the folder and select New then select the option Java
Package, as depicted below.

Packages in Java are usually named after domains, except in reverse order, with some de-
scriptive text as the last word in the package name. So if my domain is
www.middlemindgames.com my packages would start with com.middlemindgames, and
end with some meaningful description. For example
com.middlemindgames.udp_client could be a package name used to hold, you
guessed it, UDP client classes.

This book will assume no knowledge about certain subjects is preexisting and will attempt
to provide some basic knowledge when subjects are discussed for the first time. Packages
are Java’s higher level code encapsulation device, in C# a loose equivalent would be
namespaces.

15

http://www.middlemindgames.com
http://www.middlemindgames.com

The idea is that packages, and namespaces if you’re talking about C#, contain classes that
are associated with each other and have some associated use or purpose, frequently involv-
ing complex interactions. An example of this would be the java.io package included in
the Java SE development kit. The package contains classes for reading and writing all
types of different data and streams and there are also classes for handling paths, buffers,
and other features necessary when writing and reading data.

Many of the classes associated with IO are part of the java.io package. This helps sepa-
rate, organize, and label code clearly which makes our projects better structured and easier
to use and understand. Practice creating, deleting, and refactoring packages in your pro-
ject. You can access all of the menu options needed to perform these operations, and
more, by right clicking the Source Packages entry in the left hand project pane, as de-
picted above.

Try creating multiple packages with deeper levels, like
com.yourdomain.net.udp.client and com.yourdomain.net.udp.server. Next,
try creating new Java classes by right clicking the package name in the project’s left hand
navigation pane and selecting New from the context menu. Choose Java Class, you can
also create new project files from the File menu by selecting the New File option. Create
a new empty Java class using the name of your choice. Practice deleting files, creating new
classes, and using the Refactor menu option to alter the names of Java files and classes.

You should try creating, deleting, and refactoring interfaces, enumerations, and other Java
essential entities as well. This will put you in a good position with regard to project manage-
ment in that you can now manipulate most main Java entities with ease. Nice! We quickly
covered the Netbeans IDE installation, JRE version checking, Java SE installation, Net-
beans IDE updates, and project management topics.

Next, we’ll quickly cover downloading and installing the Java code base for this book onto
your machine. Go to http://www.middlemindgames.com/udpbook and look for the header
named Java / Netbeans Project. Use the links below the header to download the latest
version of the Java code for the Netbeans IDE. Expand the zip file using your OS provided
compression support, see screenshots below. Copy and paste the resulting folder into the
Netbeans IDE’s default project directory you familiarized yourself with earlier. Do this for the
Eds3App and Eds3Server projects.

16

http://www.middlemindgames.com/udpbook
http://www.middlemindgames.com/udpbook

Below is a screenshot showing how to decompress a zip file on Windows 10, the zip file
used for this screenshot is the Netbeans 11 zip file, not the project files mentioned above.

Below is a screenshot showing how to decompress a zip file on a Mac, the zip file used for
this screenshot is the Netbeans 11 zip file, not the project files mentioned above.

17

You can now load this project into Netbeans by choosing File then Open Project from
the application’s menu. Open up the two projects you’ve downloaded. Once that is done
you should see the Eds3App and Eds3Server entries in the project navigation pane on
the left hand side of the Netbeans IDE’s interface.These two projects will be the focus of
many parts of this book.

Take a moment to peruse them. Familiarize yourself with some of the package and class
names involved in the projects. To get you interested in the capability of the software we
will demo the UDP client/server interaction using the built in mock mode capability which
mocks having a game running in the background.

In order to run a demo of the UDP client/server software, synchronizing fake game object
data across multiple clients, we need to build a clean copy of both projects. After the pro-
jects are loaded in Netbeans right click on the Eds3Server project and select Build from
the context menu. Allow the build process to complete, you should see an indicator and a
build results message at the bottom of the Netbeans IDE. Allow the process to complete be-
fore performing the same operation on the Eds3App project. Now we can be sure the result-
ing jar files are up-to-date when we run the example game.

You’ll need to open up two consoles to run this demonstration, one for the client and one for
the server. On a Mac use the Terminal window, on Windows a DOS cmd prompt will do
the trick. See below for a Mac screenshot showing two Terminal windows side-by-side
and where to find the default Terminal application under the Utilities folder in the Ap-
plications directory.

18

Two Terminal windows running side-by-side on a Mac.

To open up the cmd prompt on Windows. Click the Start button and then start typing cmd,
you should see a list of programs as depicted below. Select the Command Prompt applica-
tion to launch a console. Do the same thing again so that you have two command prompt
consoles open.

19

Two DOS command prompt consoles, sometimes referred to as terminals, running side-by-
side on Windows.

20

Navigate to the Netbeans IDE’s project directory your environment uses then find the UDP
Java code you recently downloaded and installed. You want to navigate to the folder in the
Eds3App project that has the dist folder in it, this should be in the project’s main folder.
Make sure both Terminal windows are pointing to the same directory.

If you don’t see the dist folder make sure that the both the EdsApp and EdsServer pro-
jects are configured to use the dist directory as the destination build directory for the jar
file. You can access the project Properties screen by right clicking on a project in the left
hand navigation pane and selecting the Properties menu option.

The screenshot below shows the proper configuration of the Eds3Server project. The
Eds3App should be similarly configured. Build both projects, starting with Eds3Server
first, to make sure the jar files are fresh and in the correct place.

21

To start up the demonstration server type the following command into the Terminal.
Change directory to the Netbeans IDE’s default project folder. The command I use is de-
picted below in the Teminal window.

cd
/Users/victor/Documents/files/netbeans_workspace/Eds3Java/Eds3App

22

Next, run the command needed to start up the server. The command is listed below and a
screenshot of the Terminal is shown.

java -jar ./dist/Eds3App.jar server 127.0.0.1 50006

23

Hit enter and the Java version of the UDP server software will start up and begin listening
for connections on the loopback network interface on port 50006. This is a special IP ad-
dress that points to the local network interface on most modern operating systems. The ar-
gument, server, is there to indicate that we want the server version of the software to
start.

24

In keeping with the practice of providing basic details for concepts the first time we come
across them, UDP stands for Universal Datagram Packet and is a type of network protocol
somewhat similar to TCP except that UDP is much simpler, lighter, faster, and has no deliv-
ery guarantees. That being said it’s lean and mean and perfect for networked video games.

Nicely done, we have half the demo up and running although it certainly won’t be doing
much until we get the clients going. Now in the next Terminal window type the following
command but don’t hit enter right away.

java -jar ./dist/Eds3App.jar clients 127.0.0.1 50006

Ok, now take a deep breath and submit the command by hitting enter. You should see a
burst of activity as the client’s Terminal window spawns five or six clients to synchronize
mock video game data across the UDP server running in the other Terminal window. Al-
though the screenshots above depict terminals running on a Mac you can run the same ex-
act Java commands on Windows consoles.

Now while this may seem trivial let’s review what it is we have going on here. We have a
UDP server running in Java and listening to connections on port 50006 for local IP address

25

127.0.0.1. We also have a set of clients all sharing information with each other through the
UDP server. Not too bad for a few minutes worth of work.

There should be a fair amount of text flashing across the Terminal windows, don’t worry
the clients will stop after a preset number of network interactions occur. What you are wit-
nessing is the client/server mock mode demonstration where the clients pretend to be run-
ning a video game by synchronizing randomly generated mock video game objects. By
mock video game objects we mean fake data about the position and rotation of fake video
game objects. Not so bad huh? You should see something similar to the screenshot below.

Still not convinced this book and the software it reviews can help you get where you need
to go? Let’s do another demonstration! This new demonstration is going to run a special ver-
sion of the Unity 3D game that is designed to work with the local loopback IP address. You
can download a copy of the special local version of the example game at the following URL
http://www.middlemindgames.com/udpbook. Locate the “Local” binaries that correspond
with your operating system. These are precompiled to target IP address 127.0.0.1 and port
50006.

Unzip the downloaded file and if need be make a copy of the game as depicted below. You
can do the equivalent on a PC by creating a copy of the resulting game folder and changing
the name of the .exe file and corresponding data directory. Doing this on a Mac will make
sure we can run two copies of the game side-by-side. The screenshot below depicts the de-
sired results. The names of the files you use might be slightly different than those depicted
below.

26

http://www.middlemindgames.com/udpbook
http://www.middlemindgames.com/udpbook

On Windows the two copies of the local executable are depicted in the screenshot below.

Make sure you have your server up and running in a console and start up the two copies of
the example game. You should see something similar to the screenshot below. Try moving
the individual players around and firing some projectiles at them. Use the mouse or the N,M

27

keys to rotate. Movement is achieved by using the arrow keys, up, down, left, right. Finally,
jumping and shooting are accomplished by using the J and K keys respectively. You can
also click the mouse’s left button, left click, to shoot.

I know this demonstration is far from the Netbeans IDE introduction we started this part of
the book with and is a little off topic but I wanted to demonstrate what the code we’ll be re-
viewing in this book actually does. It’s a synchronized, real-time, UDP client/server imple-
mentation that is cross-platform and flexible enough to plug into Unity 3D while using Java
on the backend.

Not bad at all. The next parts of this book will explain, in detail, how the code is designed,
how it works, and how it can be customized and plugged into your next game. It will also
cover, in detail, the structure and implementation of the Unity 3D example game. Enjoy!

28

Part 4: Server Code: Main Classes 1

Ever wonder how games like FortNite and PUBG work behind the scenes? Does it seem
almost magical how one hundred players can all participate in a massive networked video
game? This book will outline a video game client/server implementation that is fast and effi-
cient and will have you well on your way to building the next great multiplayer video game.

The code that we will review in this and upcoming parts of this book are based on the Java
version of the software. There is also a C# version of the software but the line numbers
won’t match up to the Java code snippets. Aside from that it should be just as understand-
able for most coders. So if you want to follow along using the C# version of the UDP client/
server code that should be fine.

Both client/server implementations are compatible, true cross-platform implementations
down to the method names. You can run the Java server with the C# client, or vice-versa.
In fact the example game uses the C# client plugged into a Unity 3D project with Java as
the backend server. Even if you’re not entirely interested in the cross-platform aspects of
the code it might be worth taking a look at how it’s implemented. It will give you a basic un-
derstanding of cross-platform API implementation techniques.

If you’re new to socket programming don’t worry you’ll gain experience throughout the
course of this book. Because games require fast networking, when they have a real time ac-
tion element to them, we will choose to use the UDP protocol instead of the TCP protocol.
The UDP protocol differs from the TCP protocol, used almost everywhere else, in that there
is no guarantee that a packet of data will get delivered. There is no hand shake, and there
is no retransmission of the data. The UDP protocol is light, efficient, and has low overhead.
It’s perfect for real time action in multiplayer networked video games.

You’re probably thinking, wait, how can this software power a video game with a hundred
players in each game? Simplifying things a bit and excluding turn based and other non real
time action games, a real time action networked video game will send out data to the server
a few times a second. If your game animation loop is running at 60 frames per second,
that’s a frame every 16.66 milliseconds.

29

You should be sending out player data to the server at half that frequency, at the very least.
If you can support it, more frequent data transmissions help make the player interaction
more fluid and realistic. What does all of that amount to? Well it means that if a few packets
of data get lost due to the UDP protocol’s lack of a guaranteed transmission it’s no big deal,
new data will be coming along in just a few milliseconds.

Another important aspect of UDP is that the messages are very small, around 9KB, so we
can send an receive messages very quickly. Achieving a data transfer rate of a few millisec-
onds should certainly be possible. We are exchanging the reliability of TCP for the speed
and efficiency of UDP.

We’re going to be doing a lot of code review in this book so we’re going to establish a proto-
col on how code is reviewed. It’s called the “class review protocol” and it is an attempt to
convey the structure and meaning of a complex class by presenting its functionality in a
structured way. We’ll attempt to build layers of familiarity with the code by working our way
up from simple concepts like the purpose of class fields and static class members to a de-
tailed review of complex class methods that use those fields and members.

On a class by class level this means we will follow the review steps outlined below. On a
project level, however, we will take a little bit of liberty in how we present classes, choosing
either server or client side, supporting or main classes as we see fit given the context.

Review Steps
Static Class Members
Enumerations
Class Fields
Pertinent Method Outline
Support Method Details
Main Method Details

Ok, now that we got that part out of the way, let’s talk a little bit about the Unity 3D example
game. The example game will be a real time action game with an arcade style to it and a
third person perspective. You know this already if you completed the demonstration in Part
3 of this book.

Actually, before we jump into the code, we should cover some general ideas about the
code we’re going to review. We need to imagine the way clients and servers will communi-

30

ibooks:///#chapterguid(7C6B4A2F-DA5F-49C3-BA3B-6E9CA3114630)
ibooks:///#chapterguid(7C6B4A2F-DA5F-49C3-BA3B-6E9CA3114630)
ibooks:///#chapterguid(7C6B4A2F-DA5F-49C3-BA3B-6E9CA3114630)
ibooks:///#chapterguid(7C6B4A2F-DA5F-49C3-BA3B-6E9CA3114630)

cate over the network using the UDP protocol. This is how it works. The client will send
data to the server, every few milliseconds, about all the game objects that need to be
shared with other players.

For instance the local player’s character is one game object that needs its data to be
shared with other players. Projectiles fired is an example of another game object that needs
its data to be shared with other players. We will refer to these game objects as network
game objects, or the game objects that other players need to know about.

We can safely assume that our game is a 3D game, hence Unity 3D, and that the attributes
of network game objects that we’re interested in are position and rotation. We can sort of
imagine the client code bundling the data it needs to send to the server into a byte array be-
fore sending it out.

But how should the client receive data about other players’ objects? Should the server peri-
odically interrupt the client with new data or should the server respond upon request from
the client? In this implementation we decided to use a simple request/response model for
the network communication. With some caveats the client will always send a request and
await the server’s response.

This request/response communication paradigm is repeated over and over again with differ-
ent data representing different network interactions used throughout the execution of the
networked video game. The phrase network interactions, as it’s used in this text, refers to
the request/response model that governs network communication. Let’s look at some code.
We’ll start with the static class members of the server class, Eds3Server.java. This is
the main class of the backend code.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

 
30 //Static Fields 
31 public static final int DUN_GEN_SEED_ERROR = Integer.MAX_VALUE; 
32 public static final int SPAWN_ID_ERROR = Integer.MAX_VALUE; 
33 public static final String TEST_URL = "http://www.google.com";  
34  
35 public static final int MIB_INT = 1048576; 
36 public static final int KIB_INT = 1024; 
37 public static final int CHECK_LOG_SIZE_TICKS = 25; 

31

http://www.google.com
http://www.google.com

38  
39 public static final int CHECK_LOG_SIZE = 5000000; 
40 public static final int DEFAULT_MAX_GAME_ROOMS = 10;  
41 public static final int DEFAULT_MAX_GAME_ROOM_PLAYERS = 10;  
42

 
We’ll review the static class members in smaller groups whenever there are a large number
of them to cover. We’ll also do the same thing for class fields. The first two static class
fields, lines 31 - 32, refer to the error codes for two of the network interactions we’ll cover
soon. The TEST_URL static field is used in the determination of the outward facing IP ad-
dress and network connectivity status. Lines 35 - 36 are static fields that refer to the size, in
bytes, of mebibytes and kibibytes respectively.

The CHECK_LOG_SIZE_TICKS static field is used to track the number of logging calls that
can be made before the next check on the log file size is run.This helps keep the log file
size under control while preventing constant file system access to check the log file’s size,
a potentially costly operation.

The next set of static class fields, on lines 39 - 41, refer to values that control the log file cy-
cling as well as certain properties of the hosted games. Let’s review them. The
CHECK_LOG_SIZE static class field refers to the maximum log file size before the log file is
recycled. The next two static class fields on lines 40 - 41 control how many network games
the server will host and the maximum number of players that can be in a game at one time.
These values are important controls that we’ll encounter again as we get deeper into the
server side code. Let’s look at the next block of static class fields.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

 
43 public static final boolean DEFAULT_DEBUG_ON = false;  
44 public static final int DEFAULT_PORT = 49986; 
45 public static final int DEFAULT_TIMEOUT = 15000;  
46  
47 public static final int DEFAULT_CONNECTION_TIMEOUT = 15000;  
48 public static final String DEFAULT_TITLE = "Eds3Server";  
49  
50 public static String DEFAULT_LOCAL_IP_ADDRESS = GetLocalIPAddressStat(); 

32

51 public static final int DEFAULT_IN_BUFFER = 9000;  
52 public static final int DEFAULT_OUT_BUFFER = 9000;  
53

 
In the next block of fields we have a number of default values that are used to initialize cor-
responding non-static class fields. The DEFAULT_DEBUG_ON static field controls the default
value of the logging control boolean. The DEFAULT_PORT static field sets the initial port
used for network communications and has a value of 49986. Now remember the client/
server software demonstrations from Part 3? We passed in a port number of 50006 if you
take a quick look back at the Terminal commands.

The static class fields we are reviewing here are default values but the actual runtime val-
ues may differ. The important things to take away from this step in the code review process
is asking yourself “What kinds of things does the class under review seem to be concerned
with?” and “What do the fields seem to be used for?”. Keep those questions in mind when-
ever we are looking at class fields, enumerations, etc.

So again what we want to always have at the back of our mind as we review classes like
this is the purpose of the fields and methods we are covering. So far we’ve seen a few
fields to help control logging, network connection details, and game limitations like maxi-
mum game rooms and maximum players in a game room. Let’s keep on going shall we.

On lines 45 - 47 we have static class fields that refer to values for network connection and
network communication timeouts. The DEFAULT_TITLE static field is used to give our
server a default name, so-to-speak. It’s just a simple field to help add extra details to the
logs. Because it’s useful to know the current local IP address of our server the static field
DEFAULT_LOCAL_IP_ADDRESS is set based on the return value of a default class method,
GetLocalIPAddressStat. We’ll be taking a look at this method in more detail in just a
bit.

Static class fields that refer to the default network buffer sizes for input and output buffers
can be found on lines 51 - 52. Notice that the sizes of our buffers are really small, as we
mentioned previously UDP network communications requires our network packets, and sub-
sequent buffers, to be small. In most cases 8 or 9 KiB is all we’ll be able to use. No worries
though we can squeeze quite a bit of data into a buffer of that size, as we shall soon see.

33

ibooks:///#chapterguid(7C6B4A2F-DA5F-49C3-BA3B-6E9CA3114630)
ibooks:///#chapterguid(7C6B4A2F-DA5F-49C3-BA3B-6E9CA3114630)

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

 
54 private static final int MIN_PORT = 0; 
55 private static final int MAX_PORT = (Short.MAX_VALUE * 2); 
56  
57 private static final int MIN_TIMEOUT = 0; 
58 private static final int MAX_TIMEOUT = (Short.MAX_VALUE * 2); 
59  
60 private static final int MAX_IN_BUFFER_LENGTH = 9000; 
61 private static final int MIN_IN_BUFFER_LENGTH = (KIB_INT * 1);  
62  
63 private static final int MAX_OUT_BUFFER_LENGTH = 9000; 
64 private static final int MIN_OUT_BUFFER_LENGTH = (KIB_INT * 1);  
65

 
The static class fields on lines 54 - 55 reference the valid range of port numbers. Similarly
the static class fields on lines 57 - 58 refer to the valid range of timeout values. The same
pattern is repeated for in and out buffer length values on lines 60 - 61 and 63 - 64. These
static class fields are used to validate values loaded from a configuration file.

The server side code has support for data driven values and as such has some protection
in place to prevent erroneous values from being loaded up. Let’s finish the review of the
static class fields used by the UDP server class.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

 
66 private static final boolean FORCE_PORT_USE = true; 
67 public static boolean ASYNC_ON = true; 
68  
69 public static boolean OBJ_PUBLISH_L2_DIST_LIMIT_ON = true;  
70 public static double OBJ_PUBLISH_L2_DIST_MAX_SQR = (1000.0 * 1000.0); 
71 public static double OBJ_PUBLISH_L2_DIST_MAX = 1000.0;  
72  
73 public static int IP_SER_LENGTH = 32; 
74 public static boolean FORCE_FLUSH = false; 
75 public static boolean SERVER_DRIVEN_MODE_ON = true;

34

 
The next block of static class fields deals with class configuration as opposed to configura-
tion validation. The FORCE_PORT_USE static class field, line 66, appends the port number
to the information used to track client connections, you’ll see why this is important in just a
bit. This static class field must be set to true in order to run the software on a single com-
puter with multiple clients, like we did in the demonstration in Part 3.

In general it is safe to leave this set to true. The next field, ASYNC_ON, line 67, controls the
internal use of threads when running certain aspects of the server code. It is also safe to
leave this static class field set to true. The set of three static class fields on lines 69 - 71 are
involved with certain server functionality that increases efficiency when dealing with net-
worked video games that have a large number of players spread out over a relatively large
area.

We are referring to a distance detection feature. The OBJ_PUBLISH_L2_DIST_LIMIT_ON
static class field controls the use of object distance detection during L2 object publication
requests. We will cover L1 and L2 object publication requests in more details soon but for
now it’s enough to know that L2 is a more feature filled object publication request.

The OBJ_PUBLISH_L2_DIST_MAX_SQR and OBJ_PUBLISH_L2_DIST_MAX static class
fields, on lines 70 - 71, determine the maximum distance two players can have and still be
included in the object publication network interaction. In short these class fields drive code
that allows the server to more efficiently share data between players.

Since, for certain game types, if two players are far away from each other they can’t really
interact and so they don’t need to know about each other. The server has the ability to de-
tect this, when configured properly, and ignore sharing data between the two players.

We use a pre-calculated squared distance value so that we can avoid having to take the
square root during distance calculations but we also supply a square root value in case we
need it. On line 73 the IP_SER_LENGTH static class field refers to the expected length in
bytes used to represent the IP address of a given player. This serialized data is provided as
part of the L2 object publication request network interaction. More on this to come.

The next static class field on line 74, FORCE_FLUSH, is a setting class field and it is used to
control the logging behavior of the class. With FORCE_FLUSH set to true logging calls will

35

ibooks:///#chapterguid(7C6B4A2F-DA5F-49C3-BA3B-6E9CA3114630)
ibooks:///#chapterguid(7C6B4A2F-DA5F-49C3-BA3B-6E9CA3114630)

force the output buffer to flush its contents, for each and every call. This adds overhead to
the logging subsystem of our software but has the benefit of forcing logs to be written al-
most immediately which can make debugging asynchronous network interactions much eas-
ier. Needless to say be careful about this static class field only set it to true if you need to.

Last but not least on line 75 is the SERVER_DRIVEN_MODE_ON static class field. This is an-
other setting static class field that controls some aspects of the underlying network interac-
tion with clients, as the name suggests. Now we have talked about the overall network com-
munication paradigm, the request/response model, but there are some caveats to how it
works so we’ll leave the details behind this static class field for a little later on. That wraps
up all the static class fields we need to review, there is one static class method we’ll cover
next, GetLocalIPAddressStat.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

 
405 public static String GetLocalIPAddressStat() { 
406 try { 
407 return InetAddress.getLocalHost().getHostAddress(); 
408 } catch (Exception e) { 
409 e.printStackTrace(); 
410 return "0.0.0.0";  
411 } 
412 } 
413

 
We’ve seen this static class method before, it was used to set an initial value for a static
class field, DEFAULT_LOCAL_IP_ADDRESS. This method simply returns the current IP ad-
dress or an error code IP address if an exception occurs. So far the server class has a mix
of static members. Some are fields used to validate other values while some are fields used
as settings that control the behavior of the server class.

These static fields should give you an idea of how the class works, a very vague idea in
any case - but we’re working on that. Next up, we’ll review any enumerations used by the
server class as we continue our UDP server code exploration.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

36

 
123 public enum Eds3ServerMode { 
124 SERVER_RECEIVE_REQUEST_DUNGEN_SEED,  
125 SERVER_SEND_REQUESTED_DUNGEN_SEED,  
126 SERVER_RECEIVE_REQUEST_SPAWN_ID, 
127 SERVER_SEND_REQUESTED_SPAWN_ID,  
128 SERVER_RECEIVE_REQUEST_OBJ_PUBLISH_L1, 
129 SERVER_SEND_REQUESTED_OBJ_PUBLISH_L1,  
130 SERVER_SEND_SET_MODE_CMD,  
131 SERVER_RECEIVE_REQUEST_DROP_CLIENT,  
132 SERVER_SEND_REQUESTED_DROP_CLIENT,  
133 SERVER_RECEIVE_REQUEST_OBJ_PUBLISH_L2, 
134 SERVER_SEND_REQUESTED_OBJ_PUBLISH_L2 
135 } 
136

 
What can we discern about our UDP server by looking at this enumeration? Can you see
it? Well, one feature of this enumeration is that most values come in send/receive pairs.
That matches our request/response network communication paradigm, so that makes
sense. In fact every single value in the enumeration is part of a pair save for the
SERVER_SEND_SET_MODE_CMD value. Another feature noticeable from this enumeration is
that there appears to be five interactions supported, dunGenSeed, spawnId, L1 object pub-
lication, dropClient, and L2 object publication.

This tells us that we should expect the server code to handle around five types of network
interactions. That was very useful. We have an idea of how the client and server are going
to communicate. We also have an idea of the number of network interactions the client and
server will support, and we have some idea of the responsibilities of the server code after
reviewing the static class fields.

Don’t forget we’ve seen static class fields that help with validating settings, network connec-
tions, logging, and synchronicity. So the server class is beginning to take shape. Next up,
we’ll review non-static class fields to further our understanding of the server class’ function-
ality.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

37

 
80 private int totalDataIn = 0; 
81 private int totalMsgsIn = 0; 
82 private int totalDataOut = 0; 
83 private int totalMsgsOut = 0; 
84  
85 private int inBufferSize = DEFAULT_IN_BUFFER; 
86 private int outBufferSize = DEFAULT_OUT_BUFFER; 
87 private String version = "0101"; 
88  
89 private String appName = DEFAULT_TITLE;  
90 private String title = DEFAULT_TITLE;  
91 private int port = DEFAULT_PORT;  
92

 
In the first block of class fields, on lines 80 - 83, we have a few fields that track network
message statistics like the number of bytes going in and out of the server as well as the
number of messages going in and out of the server. Lines 85 - 86 should be familiar, we are
using the static class fields reviewed earlier to set some default values. The version class
field is a server identifier that can be used to inform clients of the version of this server im-
plementation, line 87.

Imagine a scenario where some small but important changes were added to the server. Cli-
ents could use the server’s version class field to adjust how they interact with the server.
Thereby executing different code if the server version matches a certain value or falling
back to the original client code if the server version number is older.

Similarly, the appName and title class fields are also server identifier fields but they are
mostly used locally at the console or in the logs to determine which server’s logs we are
looking into. On line 91 we have a class field that deals with networking. The port class
field references the server’s port and is initialized to the default port value. The next block
of class variables starts to reveal some of the core aspects of the server class. Let’s take a
look.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

38

 
093 private int timeout = DEFAULT_TIMEOUT;  
094  
095 private Hashtable<String, GameRoom> players = null; 
096 private ArrayList<GameRoom> gameRooms = null; 
097 private boolean shuttingDown = false; 
098  
099 private int maxGameRooms = DEFAULT_MAX_GAME_ROOMS;  
100 private int maxGameRoomPlayers = DEFAULT_MAX_GAME_ROOM_PLAYERS;  
101 private String rootDir = ".";  
102 private String appDir = "";  
103

 
We’ve seen a mix of class fields thus far, some having to do with class settings, some net-
work settings, etc. On line 93 we have a class field, timeout, that deals with networking, it
references the timeout value used in some socket features. It is initialized with the default
value we covered earlier.

The next class field is very important, it is a data structure that maps a String to a Gam-
eRoom. The field is called players and it holds data for each player connected to the
server no matter what game room they are playing in. In this case we are using an associa-
tive data structure, a Hashtable that associates a String to a GameRoom.

The identifying string used to create an association to a GameRoom instance is the IP ad-
dress, and possibly port, of the client. At times I will refer to the client and the player inter-
changeably. The main thing to note is that we are referring to the UDP client that is running
while that player engages in a network game. If the static class field FORCE_PORT_USE is
set to true the identifying string used is the client’s IP address and the port that the client is
running on.

This flag is required to be set to true in order to perform a multiple client console test on a
single computer. Can you see why? Without the extra level of distinction provided by the
port number the identifying string would be just the IP address and that would be the same
for all local UDP clients connecting to the local server. But by setting FORCE_PORT_USE to
true we can make the identifying string unique because no two clients will be assigned the
same port number.

39

The next class field, gameRooms on line 96, is an ArrayList data structure of GameRoom
instances. As new players connect to the server new game rooms are created to support
them. The gameRooms class field allows you to iterate over all the active game rooms on
the server. So if the players class field enabled us to lookup the game room for a given
player’s IP address and port number, the gameRooms class field let’s us look at any active
game room on the server. The boolean on line 97, shuttingDown, is also an important
class field as it toggles the server into shutdown mode, more on this to come.

The next two class fields, line 99 - 100, control the maximum number of game rooms al-
lowed to be active on the server and the maximum number of players that are allowed to be
in a single game room. Both class fields fall under the settings category and are initialized
to the static field defaults we’ve already covered. The remaining two class fields in this
code block rootDir and appDir on lines 101 - 102 are used to map paths to local directo-
ries for loading configuration files and writing out log files.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

 
104 private String configFileName = "config.txt";  
105 private String configFilePath = "";  
106 private String debugFileName = "debug.txt";  
107  
108 private String debugFilePath = "";  
109 private boolean debugOn = DEFAULT_DEBUG_ON;  
110 private BufferedWriter debug = null; 
111

 
In the next code block, listed above, we have class fields for storing the expected config file
name, the debug file name, and the paths to those files. On line 109 we have an important
class field that controls the debug file logging, debugOn. Following debugOn we have a
BufferedWriter instance, the debug class field, used in the writing of debug logs. No-
tice that the debugOn class field is initialized to the static class field’s default value. The
next block of class fields will bring us to the end of this review step.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

40

 
112 private FileWriter fw = null; 
113 private int wrCount = 0; 
114 private String localIpAddress = DEFAULT_LOCAL_IP_ADDRESS;  
115 private InetSocketAddress endPoint; 
116 private DatagramSocket serverSocket; 
117 private boolean closeAllClients = false;  
118 private HandleEds3ServerComm commH = null; 
119 private GameObjectWrapper gowStatic = null;

 
We can see that we have some file writing support classes as well as a wrCount tracker in
this block of class fields. The FileWriter instance fw, line 112, is used in conjunction
with some of the logging control class fields we’ve seen thus far. On line 113, the wrCount
class field is used to track how many write calls to the logs have occurred. The localIpAd-
dress class field, line 114, is initialized to the static field default value reviewed earlier. The
entries on lines 115 - 116 are used in the network control code to initialize the UDP socket.

The boolean on line 117, closeAllClients, is used to tell the server to safely close all
client connections. When set to true the server will attempt to trigger each client’s discon-
nect process. The HandleEds3ServerComm class instance, commH, is used to extend and
customize the functionality of the server by providing user defined methods that are called
at specific places during normal server operations. There is a whole part of this book dedi-
cated to describing the customization features of the code we’re working with so don’t
worry we will cover it.

Lastly we have an instance of the GameObjectWrapper class called gowStatic, line
119, which will be used to access static class fields of the GameObjectWrapper class.
Both the client and server use information from static class fields of the GameObjectWrap-
per class.

Next, we will present a method outline for the server class. We will not include simple get-
ters and setters and simple overridden methods like toString unless it has some signifi-
cance worth discussing. On to the method outline.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

41

 
//Constructors 
public Eds3Server() { ... } 
public Eds3Server(HandleEds3ServerComm commH) { ... }

//Utility Methods 
public void PrintEds3ModeValues() { ... } 
private void LoadSettings() { ... } 
public boolean PrintConfig() { ... }

public boolean GetIsNetworkAvailable() { ... } 
public String GetLocalIPAddress() { ... } 
public void PrintState() { ... }

private int CountTotalPlayers() { ... } 
public void PrintStackTrace(StackTraceElement[] st) { ... } 
public synchronized void wr(String s) { ... }

//Logging Methods 
private void CreateDebugFile() { ... } 
private void CreateDebugFile(boolean append) { ... } 
private void CloseDebugFile() { ... }

//Network Helper Methods 
private synchronized int GetNewDunGenSeed() { ... } 
private synchronized boolean AssignGameRoom(Player p) { ... } 
private synchronized boolean IsNewPlayer(String ip) { ... }

private synchronized boolean IsExistingPlayer(String ip) { ... } 
public synchronized void ProcessCmd(String cmd) { ... }

//Network Methods 
public void run() { ... } 
private void StartListening() { ... } 
public void Stop() { ... }

public void Start() { ... } 
public void CloseAllClients(boolean b) { ... }

42

private void AsyncNetworkReadCallBack(DatagramPacket receivePacket) { ... } 
private void AsyncNetworkWriteCallBack(DatagramPacket sendPacket) { ... }

public synchronized void NetworkReadCallBack(DatagramPacket receivePacket) { ... } 
public synchronized void NetworkWriteCallBack(DatagramPacket sendPacket) { ... }

 
Take a look at the method list, these are the main methods that are used to run the UDP
server. As you go over the list of methods think about the static and non-static class fields
we reviewed earlier. Think about the values the different fields referenced and how they
might be used.

Once you’re done perusing the list we’ll start by reviewing constructors and helper meth-
ods. You should start feeling more comfortable working with the server code as we pro-
gress. As we review methods and their implementation you’ll become even more familiar
with the internals of the server class.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

 
139 public Eds3Server() { 
140 appDir = rootDir + File.separator + appName;  
141 configFilePath = appDir + File.separator + configFileName;  
142 debugFilePath = appDir + File.separator + debugFileName;  
143  
144 System.out.println(""); 
145 System.out.println("App Dir: " + appDir);  
146 System.out.println("Config Path: " + configFilePath); 
147 System.out.println("Debug Path: " + debugFilePath); 
148 System.out.println("Version: " + version); 
149  
150 LoadSettings(); 
151 CreateDebugFile();  
152 PrintEds3ModeValues();  
153  
154 players = new Hashtable(); 
155 gameRooms = new ArrayList(); 
156 this.gowStatic = this.GetEmptyGameObjectWrapper(); 

43

157 } 
158

 
The constructor configures the paths used for configuration and debug logging on lines 140
- 142. Class fields appDir, configFilePath, debugFilePath should be familiar. The
appDir class field is set to the rootDir plus the appName, allowing multiple servers to
run side by side as long as they have unique appNames set.

The next block of code on lines 144 - 148 prints the path variables directly to the standard
output, bypassing any logging systems, this is to guarantee the important path information
always reaches standard output. The configuration file is parsed and loaded with the call to
the LoadSettings method, similarly the logging system is initiated with a call to
CreateDebugFile.The PrintEds3ModeValues method is used to ensure that the enu-
meration values are the same for the Java and C# versions of the server code. An easy
way to guarantee this is to print the values out on server startup and compare them.

Finally some key class fields are initialized on lines 154 - 156. The players and gam-
eRooms data structures are prepared and the gowStatic class field is set to an empty de-
fault value. That covers the basic constructor, let’s take a look at a constructor that supports
some arguments.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

 
159 public Eds3Server(HandleEds3ServerComm CommH) { 
160 appDir = rootDir + File.separator + appName;  
161 configFilePath = appDir + File.separator + configFileName;  
162 debugFilePath = appDir + File.separator + debugFileName;  
163 this.commH = CommH; 
164  
165 System.out.println(""); 
166 System.out.println("App Dir: " + appDir);  
167 System.out.println("Config Path: " + configFilePath); 
168 System.out.println("Debug Path: " + debugFilePath); 
169 System.out.println("Version: " + version); 
170  
171 LoadSettings(); 

44

172 CreateDebugFile();  
173 PrintEds3ModeValues();  
174  
175 players = new Hashtable(); 
176 gameRooms = new ArrayList(); 
177 this.gowStatic = this.GetEmptyGameObjectWrapper(); 
178  
179 if (this.commH != null) { 
180 this.commH.HandleEds3ServerInit(this); 
181 } 
182 } 
183

 
I should take a moment to mention that the server class extends the Runnable class, this
allows the server code to run in it’s own thread. The overloaded constructor takes a Han-
dleEds3ServerComm class instance as an argument. This class allows for the customiza-
tion of the server’s behavior and although it can be set later on in the life cycle of the server
class to fully take advantage of it we should pass it in as a constructor argument.

Notice that on line 180, if the argument passed in is not null then we run a customization
method, HandleEds3ServerInit and pass it a reference to this server instance as an ar-
gument. Now the customization class can run code in response to the server initializing and
that code can potentially access all public members of the server class.

This allows us to run special code in response to the server starting up. If you think about
this in the context of a game you can imagine maybe we can start loading game resources,
monitoring the network connection to see if we have internet access or any number of other
things. This is an example of the customization features we mentioned earlier and depicts
in a general sense how customization is taken care of in the client/server code implementa-
tion.

That takes care of the constructor review. Next, we will move on and review the utility meth-
ods of the server class starting with the PrintEds3ModeValues method.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

45

 
185 public void PrintEds3ModeValues() { 
186 Eds3ServerMode[] vals = Eds3ServerMode.values(); 
187 int len = vals.length; 
188  
189 for (int i = 0; i < len; i++) { 
190 wr("Idx: " + i + " Eds3Mode Value: " + vals[i].ordinal()); 
191 } 
192 } 
193

 
As you can see this simple helper method creates an array of the enumeration entries of
the Eds3ServerMode enumeration along with an expected length value for the array. Loop-
ing over the array elements we print out their ordinal values using the server’s debug log-
ging method, wr.

Notice that this type of logging goes through the logging system and is not written directly
to standard output. In this way the logs being written here may be subject to control by a
global logging variable and not show up on standard output. If they do however make it to
standard output we can easily compare the Java and C# versions of the server to make
sure that their enumerations have assigned the same values to the same entries.

Without this check there is potential for the values to be different, after-all C# might change
in a way that is different than Java and then a C# based server won’t understand a Java
based client. So in order to prevent this we make sure the mode values match. The next
helper method we’ll look at is the PrintConfig method, it’s short and sweet so don’t
worry we’ll get into advanced methods soon enough.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

 
368 public boolean PrintConfig() { 
369 System.out.println("==========CURRENT CONFIG==========="); 
370 System.out.println("Version: " + version); 
371 System.out.println("Found port: " + this.port); 
372 System.out.println("Found debug: " + this.debugOn); 
373 System.out.println("Found connection_timeout_ms: " + this.timeout + " ms"); 

46

374 System.out.println("Found in_buffer_size: " + this.inBufferSize + " bytes"); 
375 System.out.println("Found out_buffer_size: " + this.outBufferSize + " bytes"); 
376  
377 if (GetIsNetworkAvailable() == true) { 
378 GetLocalIPAddress(); 
379 return true; 
380 } else { 
381 System.out.println("Network connection not found."); 
382 return false; 
383 } 
384 } 
385

 
The PrintConfig method simply writes some important networking information to stan-
dard output. Again, notice the choice of using direct standard output write calls here. If a net-
work connection is available the GetLocalIPAddress method is called and a true value
is returned. If not, a message indicating no network connection has been found is printed
out and a false value is returned. In this way the PrintConfig method also let’s us know
if the network is available at the time it is called.

One other thing we should notice about the PrintConfig method is the simplicity and sin-
gularity of focus of its design. This is good practice when writing any method but ever more
so for helper methods. Let’s take a look at two more helper methods that touch upon some
of the network class fields used by the server class.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

 
387 public boolean GetIsNetworkAvailable() { 
388 try { 
389 URL url = new URL(TEST_URL); 
390 HttpURLConnection con = (HttpURLConnection) url.openConnection(); 
391 con.connect(); 
392  
393 if (con.getResponseCode() == 200) { 
394 return true; 
395 } else { 
396 return false; 

47

397 } 
398 } catch (Exception e) { 
399 e.printStackTrace(); 
400 } 
401 return false; 
402 } 
403

 
The GetIsNetworkAvailable helper method opens an HTTP connection to the
TEST_URL that was defined in the server’s static fields. If the connection can be estab-
lished and the connection returns an HTTP response code of 200, which indicates a suc-
cessful request, the method returns true otherwise it returns false. This method fires off an
HTTP request so we should be mindful of how we use it, it wouldn’t be efficient to run this
method frequently.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

 
415 public String GetLocalIPAddress() { 
416 try { 
417 Enumeration e = NetworkInterface.getNetworkInterfaces(); 
418 while (e.hasMoreElements()) { 
419 NetworkInterface n = (NetworkInterface) e.nextElement(); 
420 Enumeration ee = n.getInetAddresses(); 
421 while (ee.hasMoreElements()) { 
422 InetAddress i = (InetAddress) ee.nextElement(); 
423 return i.toString(); 
424 } 
425 } 
426 } catch (Exception e) { 
427 e.printStackTrace(); 
428 } 
429 return "0.0.0.0";  
430 } 
431

 
Take a look at this helper method. Doesn’t it look familiar? It’s a similar method to the static

48

class method we covered earlier, GetLocalIPAddressStat, but there are some issues
here we should mention. The first thing I should mention is that this method behaves differ-
ently than its static counterpart in some cases.

For instance a computer with multiple network interfaces would return a different IP address
using the non-static method because it loops over network interfaces and assigned IP ad-
dresses in an unknown ordering and returns the first IP address found. The static method
simply returns the default adapter’s IP address.

So why let this blatant issue persist you ask? Well it turns out it’s not such a big deal. We
will most likely rely on setting the IP address directly via the config file or command line ar-
guments. The next two helper methods we will review together, they help provide informa-
tion on the status of the server.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

 
432 public void PrintState() { 
433 System.out.println("==========CURRENT STATE==========="); 
434 System.out.println("GameRooms: " + this.gameRooms.size()); 
435 System.out.println("TotalPlayers: " + this.CountTotalPlayers()); 
436 } 
437  
438 private int CountTotalPlayers() { 
439 int total = 0;  
440 int len = gameRooms.size(); 
441 for (int i = 0; i < len; i++) { 
442 total += gameRooms.get(i).players.size(); 
443 } 
444 return total; 
445 } 
446

 
The PrintState method is simple, it just prints to standard output the number of game
rooms in use as well as the number of active players on the server. To calculate the total
number of players, i.e. the CountTotalPlayers method, we loop over the game rooms
and count the number of players in each game room.

49

This wraps up the review of helper methods for the server class. Take the time to go over
any methods that don’t seem clear to you. You may also want to take a look at the log file
methods that take care of opening, setting up, and closing the debug log file.

We won’t be reviewing getter and setter methods, as I mentioned earlier, since they are
very simple and direct. Take a moment to look them over they should be familiar in that
we’ve reviewed the underlying class fields they interact with.

That brings us to the network helper method section. We’ll be reviewing these class meth-
ods next. Remember we are still covering the main classes of the server side implementa-
tion, specifically the Eds3Server class. The network helper methods don’t control the
main network functionality of the server class but they do support it. Let’s take a look and
see what the code looks like as we further our understanding of the server class.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

 
651 private synchronized int GetNewDunGenSeed() { 
652 return (int) (Math.random() * Eds3Server.DUN_GEN_SEED_ERROR) - 1; 
653 } 
654

 
We’ll start off with the simple method written above. As mentioned before the client/server
communication process uses a request/response network interaction paradigm initiated by
the client. As the client starts up and initializes its network support the first request the client
sends out is a request for a unique level identifier referred to in this text as a dunGenSeed.

You can see from the code above that the dunGenSeed is a randomly generated integer
value. Depending on the game you implement, this network interaction could be significant
and be used to seed a procedural level generator. In other cases it may just be used to get
a unique ID value for the game room of the current network game.

Another set of important network helper methods are those that can tell use if a connecting
client is new or already exists in a game room on our server. Let’s take a look at the IsNew-
Player and IsExistingPlayer network helper methods outlined next.

50

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

 
730 private synchronized boolean IsNewPlayer(String ip) { 
731 if (this.players != null) { 
732 if (this.players.containsKey(ip)) { 
733 return false; 
734 } else { 
735 return true; 
736 } 
737 } else { 
738 this.players = new Hashtable(); 
739 return true; 
740 } 
741 } 
742

 
The IsNewPlayer helper method, listed previously, is fairly direct. The method checks the
players data structure for a matching player IP string, this IP string can include the client
port as we discussed earlier. If the player’s connection IP doesn’t exist or if the players
data structure hasn’t been initialized the method returns false, otherwise the player has
been found and a true value is returned.

The corresponding method, IsExistingPlayer, is up for review next. Let’s take a look.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

 
743 private synchronized boolean IsExistingPlayer(String ip) { 
744 return !IsNewPlayer(ip); 
745 } 
746

 
This method is very straight-forward. Basically the inverse of the IsNewPlayer method is
returned. So if the player is new then the IsExistingPlayer method returns false. Can
you see from these helper methods why we chose to store player data directly in the class

51

field players as well as indirectly as part of the class fields of the GameRoom class? With-
out the players ArrayList we would need to search each game room for the player in
question.

The approach above is more efficient, and it only costs us moderate overhead maintaining
the state of the players ArrayList. If that isn’t reason enough we have to realize that
each time a client connects to the server we need to determine if they are a new player or a
returning player.

You should begin to notice that the server class does a bit more than just communicate
back and forth with a client or two. The server class manages a set of game rooms, each
representing an active network game, and also takes care of assigning players to certain
game rooms and syncing player data for those players that are in the same game room. Be-
cause we are relying on IP address and port values as a client’s ID string we can guarantee
that players are unique with regard to their network end-point.

The next network helper method we’ll take a look at is the AssignGameRoom method, out-
lined next.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

 
655 private synchronized boolean AssignGameRoom(Player p) { 
656 if (p == null) { 
657 return false; 
658 } 
659  
660 int len = this.gameRooms.size(); 
661 GameRoom r = null; 
662 boolean found = false;  
663 int id = 0; 
664 String ip = p.ip;  
665 int port = p.port; 
666  
667 for (int i = 0; i < len; i++) { 
668 r = this.gameRooms.get(i); 
669 if (r != null && r.players.containsKey(p.ip)) { 
670 wr(ip + ":" + port + ": Player already exists."); 

52

671 return true; 
672 } 
673  
674 if (r != null && r.players.size() < this.maxGameRoomPlayers && !found) { 
675 wr(ip + ":" + port + ": Player doesn't already exist, but room does."); 
676 id = i; 
677 found = true; 
678 } 
679 } 
680  
681 if (!found) { 
682 if (this.gameRooms.size() < this.maxGameRooms) { 
683 //register a new room 
684 wr(ip + ":" + port + ": Register a new game room."); 
685 r = new GameRoom(); 
686 r.serverVersion = this.version; 
687 r.dunGenSeed = this.GetNewDunGenSeed(); 
688 r.id = this.gameRooms.size(); 
689 r.eds3server = this; 
690 this.gameRooms.add(r); 
691  
692 //set player info 
693 p.roomId = this.gameRooms.indexOf(r); 
694 r.players.put(p.ip, p);  
695 
696 p.id = r.players.get(p.ip).hashCode();  
697 p.spawnId = r.GetSpawnId(); 
698  
699 //register player with room 
700 this.players.put(p.ip, r); 
701 } else { 
702 wr(ip + ":" + port + ": Max rooms reached."); 
703 r = null; 
704 p.roomId = -1; 
705 p.id = -1; 
706 p.spawnId = -1; 
707 } 
708 } else { 
709 //get existing room 
710 wr(ip + ":" + port + ": Get existing game room."); 
711 r = gameRooms.get(id); 

53

712  
713 //set player info 
714 p.roomId = this.gameRooms.indexOf(r); 
715 r.players.put(p.ip, p);  
716 p.id = r.players.get(p.ip).hashCode();  
717 p.spawnId = r.GetSpawnId(); 
718  
719 this.players.put(p.ip, r);  
720 } 
721  
722 if (r != null) { 
723 wr(ip + ":" + port + ": Assigning player to room: " + p.roomId + " player id: " + p.id); 
724 return true; 
725 } else { 
726 return false; 
727 } 
728 } 
729

 
It may seem a little confusing looking at these helper methods outside of any context but
it’s much less confusing than looking at the main methods first. As you progress through
the text your experience will grow and the code will make more sense and be easier to ab-
sorb. Let’s review the code listed previously.

The AssignGameRoom method takes an instance of the Player class as an argument and
after validating the passed in argument, lines 656 - 658, a number of local variables are de-
clared and initialized with starting values on lines 660 - 665. The action really starts in the
for loop on line 667 where two tasks are accomplished. The first task requires us to check
each game room to see if our player already exists. If we find that a game room contains
the player we’re looking for we can return true and exit because our work is already done.

The second task we need to perform is to find the first game room, if any, that a new player
can be added to. Because this could occur in any game room we need to check each ac-
tive game room on the server. Since we are already scanning through all the game rooms
we can see to both tasks at the same time. There are two situations that can exist that
would cause the loop to complete without the method returning in the for loop.

54

The first situation is that an existing game room with space for a new player is found. The
second situation is that no matching player and no available game rooms are found. If no
game room with space for a new player is found and there is enough space to add a new
game room to the server we create one. Register it with the list of active game rooms, then
add the new player to it.

If an existing game room with player space is found we simply add the new player to that
game room. Upon exiting the loop if a valid game room exists with the given player in it, the
method returns true otherwise it returns false.

When a client requests a new dunGenSeed, think game room ID, the server takes care of
placing the player in an existing game room, or creates a new game room and places the
player in it. The GameRoom is an association of players, UDP clients running in a video
game. And game rooms are objects in memory on the backend video game server with as-
sociated players. Notice how loose this association is?

The server doesn’t care, for lack of a better word, what network game is actually running.
The server performs simple and efficient actions keeping track of active game rooms and
players. We’ll finish up the network helper method review before covering the main network
methods.

A quick note on the use of the synchronized keyword. We want to synchronize methods
when we’re running in a multi-threaded environment. For instance adding a player to a
game room is an action that can affect other asynchronously executing operations that
could be occurring simultaneously. Using the synchronized keyword, in Java anyhow, en-
sures that multiple threads processing client requests will interact cleanly with shared class
fields like gameRooms and player.

In the C# version of the code we don’t use the synchronized keyword, we use the lock
method to protect class fields during access in a multi-threaded environment. The next
helper method we’ll review is the ProcessCmd method. This method is used to query the
server class for information about itself and the games running on the server. Let’s take a
look at some code.

Eds3Server -> com.middlemind.Eds3.Eds3Server.java

55

 
747 public synchronized void ProcessCmd(String cmd) { 
748 wr("server processCmd: " + cmd); 
749 if (cmd != null) { 
750 cmd = cmd.toLowerCase().trim(); 
751  
752 if (cmd.equals("help")) { 
753 wr("q: Quit server."); 
754 wr("netstats: Print general network stats."); 
755 wr("listrooms: Lists current game rooms."); 
756 wr("listplayers-[game room index]: List players in the given game room index."); 
757 wr("listlagplayers-[game room index]: List network lag players in the given game room in-
dex.");  
758  
759 } else if (cmd.equals("q")) { 
760 wr("Stopping server...");  
761 this.Stop(); 
762  
763 } else if (cmd.equals("netstats")) { 
764 wr("TotalNetworkDataIn: " + this.totalDataIn); 
765 wr("TotalNetworkMsgsIn: " + this.totalMsgsIn); 
766 wr("TotalNetworkDataOut: " + this.totalDataOut); 
767 wr("TotalNetworkMsgsOut: " + this.totalMsgsOut); 
768  
769 } else if (cmd.equals("listrooms")) { 
770 int len = this.gameRooms.size(); 
771 wr("Scanning " + len + " rooms..."); 
772 for (int i = 0; i < len; i++) { 
773 wr("RoomIdx: " + (i + 1)); 
774 wr(this.gameRooms.get(i).toString()); 
775 } 
776  
777 } else if (cmd.indexOf("listplayers") != -1) { 
778 String[] s = null; 
779 if (cmd.indexOf("-") != -1) { 
780 s = cmd.split("-"); 
781 int idx = Integer.parseInt(s[1]); 
782 GameRoom r = this.gameRooms.get(idx); 
783 Player p = null; 
784 int cnt = 0; 
785 if (r != null) { 

56

786 for (String key : r.players.keySet()) { 
787 p = r.players.get(key); 
788 wr("PlayerIdx: " + (cnt + 1)); 
789 wr(p.toString()); 
790 cnt++; 
791 } 
792 } 
793 } else { 
794 wr("No room specified..."); 
795 } 
796  
797 } else if (cmd.indexOf("listlagplayers") != -1) { 
798 String[] s = null; 
799 if (cmd.indexOf("-") != -1) { 
800 s = cmd.split("-"); 
801 int idx = Integer.parseInt(s[1]); 
802 GameRoom r = this.gameRooms.get(idx); 
803 int cnt = 0; 
804 if (r != null) { 
805 for (Player p : r.lagPlayers) { 
806 wr("LagPlayerIdx: " + (cnt + 1)); 
807 wr(p.toString()); 
808 cnt++; 
809 } 
810 } 
811 } else { 
812 wr("No room specified..."); 
813 } 
814  
815 } else { 
816 wr("Nothing to do..."); 
817 } 
818 } 
819 } 
820

 
The last network helper method left to review is the ProcessCmd method listed previously.
This method let’s you send commands to the server, from it’s Terminal, while it’s running.
Take a moment to recall the class fields we’ve reviewed so far. Remember we mentioned

57

that the server implements the Runnable interface? There were also some whispers of an
asynchronous mode. Let’s take a moment to explain things a bit.

When the server is started in a Terminal it begins execution on the application thread. In
order to guarantee the server is always available to receive incoming messages we will be
running some code in a thread distinct from the application thread, also referred to as the
main execution thread. This means our application thread is free to process user input be-
cause all of the networking takes place on an independent thread.

For instance if we run the server in a console, as demonstrated in Part 3, we can have the
console read in user input and pass that text on to the server by calling the ProcessCmd
class method. Some examples of this feature would be sending a ‘q’ argument to the
ProcessCmd method to initiate a clean server shutdown. A second example would be to
send a ‘netstats’ argument to the ProcessCmd method to display some general network
statistics.

Take a moment to review some of the other commands supported. You should find the ma-
terial to be familiar, as we’ve seen these class fields before. This brings us to the end of this
part of the book. Normally we would proceed directly to the main network method review
but I want to cover some important supporting classes first. These classes will come up in
the Part 6 review so having some background with them will be helpful.

58

ibooks:///#chapterguid(C97A6452-BA22-4342-9B78-EFE0CFF210E0)
ibooks:///#chapterguid(C97A6452-BA22-4342-9B78-EFE0CFF210E0)
ibooks:///#chapterguid(D7847F55-03E7-4088-9638-566C715BA0BD)
ibooks:///#chapterguid(D7847F55-03E7-4088-9638-566C715BA0BD)

Part 5: Client/Server Code: Supporting Classes

Let’s take a quick look at some supporting classes that are important to our main network
method review covered in Part 6: Server Code: Main Classes 2. Listed below are the sup-
porting classes we will be reviewing next. I know this sort of interrupts the review of the
server class but I think it is necessary and will result in a more successful server code re-
view.

Class Execution Space Models
Player Server Side Connecting UDP clients.
GameRoom Server Side Active network games.
GameObjectManager Client Side Managing game objects.
GameObjectWrapper Client/Server Side Video game objects.

We’ll begin by reviewing the Player class. The Player class maintains data about the
connecting network video game client including the video game objects they control and
the unique game information provided by the server.

We will be following our standard class review procedure, however, the supporting classes
we are reviewing are more concise and direct than the server class so this supporting class
review should be a short one. Take a moment to refresh yourself on the class review steps
listed below.

Review Steps
Static Class Members
Enumerations
Class Fields
Pertinent Method Outline
Support Method Details
Main Method Details

The only static member the Player class contains is the MAX_MSG_STATS static class
field. It references a value that controls the maximum number of message statistic entries

59

ibooks:///#chapterguid(D7847F55-03E7-4088-9638-566C715BA0BD)
ibooks:///#chapterguid(D7847F55-03E7-4088-9638-566C715BA0BD)

the Player class will track for the current player. We’ll see more information on this shortly.
The are no important enumerations to speak of so it’s on to the class fields.

Eds3Server -> com.middlemind.Eds3.Player.java

 
13 public int id = -1;  
14 public int roomId = -1;  
15 public String ip = null;  
16 public int spawnId = -1; 
17 public int port = -1;

 
The first set of class fields contains some important identifiers. The id field is a class identi-
fier field but it is not the identifier that is shared with other players. Think of it as an identifier
used by the server that is outside of the spawnId used by the network game.

The roomId class field, line 14, is used to reference a unique value for the given player’s
network game room. The ip field on line 15 should be familiar, we keep a reference to the
IP and port the player is using to connect to the server. The spawnId class field, line 16, is
a special identifier that represents the player’s slot in the network game. In this case the
meaning behind the spawnId could be intimately tied to the actual video game design. In
some games new players spawn into locations from a set of known spawning locations. So
while the Player class tracks these values their use in the actual game may differ.

You’re probably wondering why we have so many different identifiers in the Player class.
The reason is that the context of finding a player changes depending on the operation the
server is performing. For a direct network request we have ip and port to work with. Dur-
ing server maintenance and reporting we might be more concerned with the roomId, id or
spawnId. It all depends on the context. We don’t want to code ourselves into a corner so
let’s maintain different unique identifiers in the Player class to make our lives easier.

Eds3Server -> com.middlemind.Eds3.Player.java

 
18 public InetAddress ipAddress = null; 
19 public byte[] objPublish = null;  

60

20 public String clientVersion = null; 
21 public ArrayList<MsgStats> msgStats = null; 
22 public double msgAvgTimeMs = 0;

 
The ipAddress class field on line 18 is a convenience field that provides quick access to
some Java networking classes. We still maintain the ip and port fields but some Java net-
working calls require us to have an InetAddress instance handy. The next class field on
line 19 is subtle but important, this class field contains the serialized data, think byte array,
representing all the game objects that a given player wants to share with other game play-
ers.

On line 20 we have a clientVersion class field that references a string value represent-
ing the player’s client version code. This is similar to the version class field of the server
class. On line 21 there is an ArrayList data structure used to store network message sta-
tistics for the given player. Following that class field is another network statistic class field,
msgAvgTimeMs, on line 22, which tracks the average time in milliseconds the given
player’s network interactions take.

A little side note about the spawnId class field we just covered. The value this class field
references corresponds to the position the player will spawn into in the actual network
game. Now we said this has a lot to do with the game itself. The point I’m trying to make
here is that the server is not aware of spawn points in the literal sense.

It is however, aware that there are (maxPlayers - 1) unique spawn points in a Gam-
eRoom so the server will ensure that players in a game have a unique spawnId value in
the given GameRoom. It is up to the actual client side game code to associate a spawnId
with a location in the game’s current level.

Eds3Server -> com.middlemind.Eds3.Player.java

 
23 public int msgTotalCnt = 0; 
24 public long msgTotalXportTimeMs = 0;  
25 public long lastCommTimeMs = 0;  
26 public boolean isInactive = false;  
27 public boolean isLagging = false;

61

 
The class fields on lines 23 - 24 reference values used to track the given player’s network
statistics. The class field msgTotalCnt references a value that tracks the total number of
network messages received from a specific player. The subsequent class field on line 24,
msgTotalXportTimeMs, is used to track the total number of milliseconds that messages
from this player were in transit.

That is to say that the timestamp in the network request is compared to the current server
timestamp at the reception of the request. This gives us a somewhat accurate indication of
how long it took to receive a message from the given player. The network statistic class
fields like the ones we’ve just reviewed are used to determine which players are lagging or
are inactive. The class field on line 25, lastCommTimeMs, is used to reference the last
time we’ve heard anything from this player.

Lastly, there are two class fields which reference the current state of the player. The
isInactive and isLagging booleans are used to mark this player as lagging or inactive
and are determined by comparing the current player’s network averages with that of the
other players in the game room.

Eds3Server -> com.middlemind.Eds3.Player.java

 
28 public float x;  
29 public float y;  
30 public float z;  
31

 
The remaining fields of the Player class, x, y, and z on lines 28 - 30, are listed previously.
Although simple they take a little bit of explaining. As we’ve mentioned earlier the nature of
our client/server interactions over the network follow a request/response pattern. Some of
these network interactions, as we’ll soon see in detail, involve the client publishing data
about its network game objects to the server to be shared with other players in the current
game room.

This particular network interaction, object publication, has two modes an L1 mode and an
L2 mode. The L1 mode is simple and efficient and doesn’t contain position data about the

62

player. This works well for games where we don’t need to check how far apart players are
from each other. A networked tennis game is a good example of this, both players synchro-
nize their game objects and don’t care about the relative position of the other player.

On the other hand with games like FortNite and PUBG, should players on opposite sides of
the map synchronize their game objects? Probably not, as their is no way for the two play-
ers to interact with each other.

That completes the class field review, next up we’ll do a method outline for the Player
class, then we’ll briefly review some of the key methods of the class before moving onto the
GameRoom class. Don’t forget we’ve worked our way through most of the server code and
are taking this tangent to review supporting classes that will help us understand the
server’s remaining main methods better.

Eds3Server -> com.middlemind.Eds3.Player.java

 
//Constructors 
public Player(String ip) { ... } 
public Player(int id, int roomId, String ip) { ... } 
public Player(int id, int roomId, String ip, int port) { ... }

//Helper Methods 
public String toString() { ... } 
public int compareTo(Player p) { ... }

//Main Methods 
public void LogMsgStats(MsgStats stats) { ... } 
public void UpdateMsgStats() { ... }

 
That’s not so bad, just a few methods to review. We’ll look at the overloaded constructor
first. I’ll leave the other constructors for you to review on your own.

Eds3Server -> com.middlemind.Eds3.Player.java

63

 
53 public Player(int Id, int RoomId, String Ip, int Port) { 
54 this.x = 0.0f;  
55 this.y = 0.0f; 
56 this.z = 0.0f;  
57 this.msgStats = new ArrayList<MsgStats>(); 
58 this.id = Id; 
59 this.roomId = RoomId; 
60 this.ip = Ip; 
61 this.port = Port; 
62 } 
63

 
This class constructor is straight forward, on lines 54 - 56 we initialize the player position
class fields to zero. They may or may not be used depending on the object publication
mode, L1 or L2. But at least they are consistently initialized to zero. The next class field ini-
tialized is the msgStats ArrayList that will store this player’s network statistics.

Important identifiers are set from the passed in arguments, lines 58 - 61. Next up, following
our class review protocol, we’ll quickly review the class helper methods followed by the
class’ main methods.

Eds3Server -> com.middlemind.Eds3.Player.java

 
095 public String toString() { 
096 String ret = ""; 
097 ret += "Id: " + this.id + "\n"; 
098 ret += "RoomId: " + this.roomId + "\n"; 
099 ret += "IP: " + this.ip + "\n"; 
100 ret += "SpawnId/PlayerId: " + this.spawnId + "\n"; 
101 ret += "Port: " + this.port + "\n"; 
102 ret += "ClientVersion: " + this.clientVersion + "\n"; 
103 ret += "MsgStatsCount: " + this.msgStats.size() + "\n"; 
104 ret += "MsgAvgTimeMs: " + this.msgAvgTimeMs + "\n"; 
105 ret += "MsgTotalCnt: " + this.msgTotalCnt + "\n"; 
106 ret += "MsgTotalXportTimeMs: " + this.msgTotalXportTimeMs + "\n";  
107 return ret; 

64

108 } 
109  
110  
111 public int compareTo(Player p) { 
112 return Double.compare(this.msgAvgTimeMs, p.msgAvgTimeMs);  
113 }

 
The two helper methods are short so we’ve listed them in the previous code snippet. Both
methods are overrides of super class methods and allow the Player class to handle to-
String and compareTo operations. The compareTo helper method allows us to compare
one Player class instance to another Player class instance. In this case we are con-
cerned with ordering players by their average network performance.

Notice that the toString helper method’s purpose is to print class state information, this
can be helpful when debugging server functionality. Again, the compareTo helper method
is for sorting collections of player class instances. On line 112 we use the builtin compare
method for a Double, and we are using the class field msgAvgTimeMs as the basis for
comparison.

Take a minute to think about why we would use that class field. Figure it out yet? If we sort
a collection of Player class instances, descending, we can easily determine the top X
slowest players in a GameRoom for instance or in any collection of Player class instances.

Lastly we will review the main methods of the Player class then we will move on and ex-
amine another server side support class, the GameRoom class. Remember, this is a lengthy
aside to review some important supporting classes for both client and server code. You’ll
have enough experience with these classes that their usage will be clear when we review
the remaining sections of server code.

Eds3Server -> com.middlemind.Eds3.Player.java

 
64 public void LogMsgStats(MsgStats stats) { 
65 if (this.msgStats.size() > MAX_MSG_STATS) { 
66 this.msgStats.remove(0); 
67 } 

65

68 this.msgStats.add(stats); 
69 UpdateMsgStats(); 
70 } 
71

 
The class method LogMsgStats is used to add a new MsgStats class instance to the
given player’s collection of recent message statistics. If the collection has the maximum
number of statistics the first, and presumably the oldest entry, is removed to make room for
the new MsgStats instance. The new instance is appended and the given payer’s network
statistics are updated. That brings us to the last helper method the UpdateMsgStats
class method.

Eds3Server -> com.middlemind.Eds3.Player.java

 
73 private void UpdateMsgStats() { 
74 int len = this.msgStats.size(); 
75 int cnt = 0; 
76 double avg = 0.0;  
77 long totalDiff = 0;  
78 for (int i = 0; i < len; i++) { 
79 cnt++; 
80 totalDiff += this.msgStats.get(i).diff; 
81 } 
82  
83 if (cnt > 0) { 
84 avg = (double) totalDiff / (double) cnt; 
85 } else { 
86 avg = 0.0;  
87 } 
88  
89 this.msgAvgTimeMs = avg; 
90 this.msgTotalCnt = cnt; 
91 this.msgTotalXportTimeMs = totalDiff;  
92 } 
93

66

 
In the UpdateMsgStats class method we simply loop over the MsgStats ArrayList en-
tries to sum the individual message transmission times and count the total number of
MsgStats we have in our collection. These values are used to generate the msgAvgTi-
meMs, msgTotalCnt, msgTotalXportTimeMs values for the given player. These metrics
are used to determine which players in a GameRoom are lagging or inactive.

That wraps up the review of the Player class and brings us to the review of the GameRoom
class. The GameRoom class is another important supporting class we will quickly review.
Again, we will use the standard class review protocol you’ve come to know and love and be-
gin by covering static class members and enumerations. The GameRoom class has two
static members listed below.

Eds3Server -> com.middlemind.Eds3.GameRoom.java

 
31 public static final double PLAYER_THRESHOLD_LAG_PRCT = 0.25; 
32 public static final long PLAYER_THRESHOLD_INACTIVE_COMM_MS = 10000;  
33

 
The PLAYER_THRESHOLD_LAG_PRCT static class field is the acceptable percentage differ-
ence from the game room’s average transmission time in milliseconds. The PLAY-
ER_THRESHOLD_INACTIVE_COMM_MS static class field references the amount of inactivity
time that must pass before considering a player to be inactive. For instance if the last-
CommTimeMs class field is older than the threshold a player can be considered inactive.
Next up, we’ll review any enumerations that are important to the GameRoom class.

Eds3Server -> com.middlemind.Eds3.GameRoom.java

 
12 public enum GameRoomMode { 
13 NO_STATE,  
14 IN_LOBBY,  
15 IN_GAME,  
16 STARTING_GAME,  
17 STOPPING_GAME,  
18 SPECIAL_1, 

67

19 SPECIAL_2, 
20 SPECIAL_3, 
21 SPECIAL_4, 
22 SPECIAL_5, 
23 SPECIAL_6, 
24 SPECIAL_7, 
25 SPECIAL_8, 
26 SPECIAL_9, 
27 SPECIAL_10, 
28 SERVER_SHUTTING_DOWN 
29 } 
30

 
The GameRoomMode enumeration isn’t used very much by our example code but it contains
values that can be used to set the mode of the GameRoom to track different states of the net-
work game as it starts up. For instance if your game requires around 100 players then you
may use the IN_LOBBY mode to mark that you are still waiting for players to join the game.

Take a look at some of the other modes and see if you can imagine a type of video game
server that might use them. Next up, we’ll review the GameRoom class’ fields. Try to develop
your ideas and understanding of the GameRoom class, as well as its role in the process we
are attempting to outline, in this section.

Eds3Server -> com.middlemind.Eds3.GameRoom.java

 
34 private int spawnId = 0; 
35 public int id = -1;  
36 public Hashtable<String, Player> players = null; 
37 public GameRoomMode mode;  
38 public int dunGenSeed = 0;

 
The first class field on line 34 is private and is used to reference a value that is the last
spawnId handed out by the game room. If you recall from the Player class there was an
identifying class field also called the spawnId. The next class field, id, is an identifying
field and is a unique integer value assigned to the GameRoom instance by the server.

68

If you can imagine one hundred players using the example game with a maximum of ten
players in each game room. You would expect to find ten game rooms on the server with
id values 0 - 9. The next class field, line 36, is important and ties in the class we just fin-
ished reviewing, the Player class. Take notice that the GameRoom’s players are stored in a
Hashtable using a unique string as a key.

Remember that the core server code used IP address or IP address plus port number to
track unique players. In a similar fashion the GameRoom class tracks players by the same
string key as the server itself.

The class field mode, which is an instance of the GameRoomMode enumeration, is used by
the GameRoom class to indicate what general mode the game room is currently in. Lastly in
this block of code the class field dunGenSeed is declared and initialized with a default
value on line 38. This is another identifying class field and will reference a unique random
integer that gets assigned by the server when the game room is created.

Recall that requesting a dunGenSeed is a network interaction we touched upon during the
server code review. Don’t worry we will return to the server code review soon enough. We
just have a class or two left to cover after the GameRoom class.

Eds3Server -> com.middlemind.Eds3.GameRoom.java

 
39 public String serverVersion = null; 
40 public ArrayList<Player> lagPlayers = null;  
41 public ArrayList<Player> inactivePlayers = null;

 
In the next block of class fields listed above, line 39, serverVersion is a class field that
references a string representing the version number of the server that owns this game
room. We know the server has a version class field and the game rooms are maintained by
the server so it makes sense the GameRoom class is aware of the server’s version code.

The next two class fields, lines 40 - 41, tie into the performance metrics we touched upon
during the Player class review. The class fields lagPlayers and inactivePlayers.
These ArrayLists hold references to instances of Player classes, players from this
game room, that are considered lagging or inactive.

69

Eds3Server -> com.middlemind.Eds3.GameRoom.java

 
42 public double msgAvgTimeMs = 0.0;  
43 public int msgTotalCnt = 0; 
44 public long msgTotalXportTimeMs = 0;  
45 public ArrayList<Integer> freeSpawns = null; 
46 public Eds3Server eds3server = null;

 
Following the data structures from the previous block of code, lines 42 - 44, are message
statistics based on the performance of the game room’s players. The GameRoom statistics
are simply the same calculations used by the Player class except calculated across all
the players in the game room. These statistics are similar to class fields we’ve seen in the
Player class review so we’ll jump past them to line 45.

On line 45 we have a peculiar little class field an ArrayList of Integer instances called
freeSpawns. This looks like overkill but no worries Java supports boxing/unboxing of
lower level data types like ints to object data types like Integers as a convenience and
welcomed upgrade to the methods of old. We used to have to box and unbox ints our-
selves, ugh!

Anyhow, the freeSpawns class field compliments the spawnId private class field in that
any disconnecting players give up their spawnId and it is then stored in the freeSpawns
class field for reuse. In this way when adding a new player to the game room they are as-
signed a spawnId pulled from the freeSpawns ArrayList if any exist.

This brings us to the methods section of our class review. The following is a method sum-
mary of the GameRoom class succeeded by a review of the class’ supporting methods, and
finally the class’ main methods. Let’s take a look at the GameRoom class’ pertinent methods.

Eds3Server -> com.middlemind.Eds3.GameRoom.java

 
//Constructors 
public GameRoom() { ... } 
 

70

//Helper Methods 
public int GetSpawnId() { ... } 
public String toString() { ... } 
 
//Main Methods 
public void UpdateGameRoomStats() { ... } 
public void UpdateLaggedInactivePlayers() { ... }

 
Let’s review the constructor first.

Eds3Server -> com.middlemind.Eds3.GameRoom.java

 
49 public GameRoom() { 
50 this.players = new Hashtable<String, Player>(); 
51 this.lagPlayers = new ArrayList<Player>(); 
52 this.inactivePlayers = new ArrayList<Player>(); 
53 this.mode = GameRoomMode.IN_LOBBY;  
54 this.freeSpawns = new ArrayList<Integer>(); 
55 } 
56

 
The constructor instantiates all pertinent class fields and sets the mode of the GameRoom
class to IN_LOBBY. The method is direct so we won’t spend too much time talking about it,
just a few lines of class field initialization. Next, we’ll review the helper methods toString
and GetSpawnId.

Eds3Server -> com.middlemind.Eds3.GameRoom.java

 
142 public String toString() { 
143 String ret = ""; 
144 ret += "CurrentSpawnId: " + this.spawnId + "\n"; 
145 ret += "Id: " + this.id + "\n"; 
146 ret += "PlayerCount: " + this.players.size() + "\n"; 
147 ret += "CurrentMode: " + this.mode + "\n"; 
148 ret += "DunGenSeed: " + this.dunGenSeed + "\n"; 

71

149 ret += "ServerVersion: " + this.serverVersion + "\n"; 
150 ret += "LagPlayerCount: " + this.lagPlayers.size() + "\n"; 
151 ret += "MsgAvgTimeMs: " + this.msgAvgTimeMs + "\n"; 
152 ret += "MsgTotalCnt: " + this.msgTotalCnt + "\n"; 
153 ret += "MsgTotalXportTimeMs: " + this.msgTotalXportTimeMs + "\n";  
154 return ret; 
155 }

 
The super class override of the toString method is similar to previous toString meth-
ods we’ve looked at. The class method is helpful in debugging the server, it provides a
quick report of the GameRoom’s state. Let’s take a look at an important getter method of the
GameRoom class, GetSpawnId. We usually don’t cover very basic methods like getters and
setters but this one is different.

Eds3Server -> com.middlemind.Eds3.GameRoom.java

 
58 public int GetSpawnId() { 
59 int ret = 0; 
60 if (this.freeSpawns.size() > 0) { 
61 ret = this.freeSpawns.remove(0); 
62 } else { 
63 this.spawnId++; 
64 ret = this.spawnId; 
65 } 
66 return ret; 
67 } 
68

 
The GetSpawnId helper method is used to assign unique spawnIds to the players con-
necting to this game room. Initially we check if there are any unused spawnIds in the
freeSpawns class field. Remember players that disconnect from this game room will re-
turn their spawnIds, which are stored in the freeSpawns class field.

72

With this setup the GameRoom’s spawnId class field will range from 0 to (max players -
1). However, once a player disconnects from the game room the local spawnId class field
is no longer used if the freeSpawns data structure has any entries.

If any entries exist in the freeSpawns ArrayList one is returned after removing it from
the list. If none exist in the ArrayList the method increments the spawnId class field and
returns that value. The GetSpawnId method is designed to maintain the uniqueness and
validity of the IDs given to players joining the game room.

That brings us to the main method review. Let’s take a look at the UpdateGameRoom-
Stats method next.

Eds3Server -> com.middlemind.Eds3.GameRoom.java

 
70 public void UpdateGameRoomStats() { 
71 int cnt = 0; 
72 double avg = 0.0;  
73 long totalDiff = 0;  
74 Player p = null; 
75 for (String key : this.players.keySet()) { 
76 p = this.players.get(key); 
77 cnt += p.msgTotalCnt; 
78 totalDiff += p.msgTotalXportTimeMs;  
79 } 
80  
81 if (cnt > 0) { 
82 avg = (double) totalDiff / (double) cnt; 
83 } else { 
84 avg = 0.0;  
85 } 
86  
87 this.msgAvgTimeMs = avg; 
88 this.msgTotalCnt = cnt; 
89 this.msgTotalXportTimeMs = totalDiff;  
90 } 
91

73

 
The class method UpdateGameRoomStats is used to calculate general statistics for the
current game room. The method steps through each Player in the room and aggregates
their statistics. These values are used to recalculate the average message time for the
game room. The class fields msgAvgTimeMs, msgTotalCnt, msgTotalXportTimeMs
are updated at the end of the method.

The server class uses the results of the next main method UpdateLaggedInactivePlay-
ers to identify players that may need to be dropped due to their negative effect on the net-
work performance of the game. We’ll review the UpdateLaggedInactivePlayers class
method next.

Eds3Server -> com.middlemind.Eds3.GameRoom.java

 
093 public void UpdateLaggedInactivePlayers() { 
094 Player p = null; 
095 long now = System.currentTimeMillis(); 
096  
097 for (String key : this.players.keySet()) { 
098 p = this.players.get(key); 
099 double prctDiff = (p.msgAvgTimeMs - this.msgAvgTimeMs) / this.msgAvgTimeMs; 
100  
101 Utils.wr("Inactive Player Time Calc: " + (now - p.lastCommTimeMs)); 
102 if (now - p.lastCommTimeMs > PLAYER_THRESHOLD_INACTIVE_COMM_MS) { 
103 p.isInactive = true; 
104 p.isLagging = false; 
105  
106 if(this.inactivePlayers.contains(p) != true) { 
107 this.inactivePlayers.add(p); 
108 }else if(this.inactivePlayers.contains(p) && (now - p.lastCommTimeMs) > PLAYER_THRESH-
OLD_INACTIVE_COMM_MS * 2) { 
109 Utils.wr("Drop from game..."); 
110 if(this.eds3server.GetPlayers().containsKey(p.ip)) { 
111 this.eds3server.GetPlayers().remove(p.ip); 
112 } 
113 this.inactivePlayers.remove(p); 
114 this.players.remove(p.ip); 
115 if(!freeSpawns.contains(p.spawnId)) { 

74

116 freeSpawns.add(p.spawnId); 
117 } 
118 } 
119  
120 if(this.lagPlayers.contains(p)) { 
121 this.lagPlayers.remove(p); 
122 } 
123 } else if (prctDiff > 0 && prctDiff > PLAYER_THRESHOLD_LAG_PRCT) { 
124 p.isLagging = true; 
125 p.isInactive = false; 
126  
127 if(this.lagPlayers.contains(p) != true) { 
128 this.lagPlayers.add(p); 
129 } 
130  
131 if(this.inactivePlayers.contains(p)) { 
132 this.inactivePlayers.remove(p); 
133 } 
134 } else { 
135 p.isInactive = false; 
136 p.isLagging = false; 
137 } 
138 } 
139 } 
140

 
In the UpdateLaggedInactivePlayers main method each player in the game room has
their statistics compared to the static class fields we reviewed earlier, the PLAYER_THRESH-
OLD_LAG_PRCT and PLAYER_THRESHOLD_INACTIVE_COMM_MS. If the player hasn’t com-
municated in a certain amount of time the player’s inactivity boolean is set to true.

You’ll notice on line 108 that if the given player is already inactive and twice the inactivity
threshold time has past then the player is dropped from the server, the inactive players list,
the players list, their spawnId is returned and then finally they are removed from the lag-
ging players list in case they happen to be registered there for some reason. Ouch! Yeah
basically they are removed from the game server completely.

75

The next comparison determines if the given player’s average communication time is differ-
ent from the game room’s average communication time by a certain percentage. This differ-
ence indicates a slow network connection that could be slowing down the performance of
the network game for other players.

That wraps up our review of the GameRoom class. You can see that the main responsibility
of the class is to track network game players and maintain network performance statistics.
A lesser responsibility is to flag lagging or inactive players. If you ponder this a little bit you
may have thought, “Hey don’t boot players if they have only lagged for a message or two.”
Or, you may have thought, “What if the averages are only based on a few pieces of data?”.
These are good notions to ponder.

Feel free to add in some extra functionality to this part of the server. For now I’ll just stick
with setting the thresholds to values on the extreme side of things. In other words we’ll be
as tolerant of network issues as possible. As a quick aside, since we deal with it a lot, we’ll
describe the MsgStats class. It’s very simple and direct so we won’t talk much about it.

Eds3Server -> com.middlemind.Eds3.MsgStats.java

 
07 public class MsgStats { 
08 public long sentOn = 0; 
09 public long recvOn = 0; 
10 public long diff = 0; 
11  
12 public MsgStats(long sent, long recv) { 
13 this.SetStats(sent, recv); 
14 } 
15  
16 public final void SetStats(long sent, long recv) { 
17 this.sentOn = sent; 
18 this.recvOn = recv; 
19 this.diff = (this.recvOn - this.sentOn); 
20 } 
21 } 
22

 
Short and sweet. The MsgStats class is designed to track message send/receive timing

76

data. There are class fields for message sent time, sentOn on line 8, and message receive
time, recvOn line 9. There is also a class field for a calculated difference in send and re-
ceive times, diff, on line 10. The class supports setting all pertinent class fields from the
constructor or a setter method. A collection of MsgStats objects can be used to create a
communication history for a given player.

That wraps up our review of the server side supporting classes. Next up, we’ll start review-
ing the supporting classes on the client side of things. I’m trying to outline classes and func-
tionality to help you get a better idea of how the code works, and how - in a general sense -
the client and server code are interacting with each other.

That brings us to the GameObjectWrapperDefault, supporting class which is responsi-
ble for maintaining information about client side game objects for use with the network
code. As usual we will follow the subsequent guide lines when reviewing classes.

Review Steps
Static Class Members
Enumerations
Class Fields
Pertinent Method Outline
Support Method Details
Main Method Details

Let’s take a look at some static members.

Eds3Server -> com.middlemind.Eds3.unity.GameObjectWrapperDefault.java

 
43 public static GameObjectWrapperSerMode OBJ_SER_MODE = GameObjectWrapperSerMode.L2;  
44 public static int[] BINARY_LENGTHS = (OBJ_SER_MODE == GameObjectWrapperSerMode.L1) ?
(new int[]{4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8}) : (new int[]{4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8}); 
45 public static int[] BINARY_OFFSETS = (OBJ_SER_MODE == GameObjectWrapperSerMode.L1) ?
(new int[]{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 52}) : (new int[]{0, 4, 8, 12, 16, 20, 24, 28, 32, 36,
40, 44, 48, 52, 56, 64}); 
46 public static int TOTAL_LENGTH = (OBJ_SER_MODE == GameObjectWrapperSerMode.L1) ?
(52) : (64);  

77

47 public static boolean GEN_RANDOM_ATTRS = true;  
48

 
The OBJ_SER_MODE static class field is used to set the serialization mode for all GameOb-
jectWrapperDefault instances. Serialization is the conversion of class fields or other
data into an array of bytes for transport across the network. The code we’re reviewing sup-
ports serializing the GameObjectWrapperDefault class fields in two different ways.

One approach has some extra data which may be unnecessary in some network games.
This setting is similar to the object publication mode we encountered in the server code.
More to come on the serialization mode soon.

The next three static class fields all have to do with supporting the serialization mode set in
the OBJ_SER_MODE static class field. The BINARY_LENGTHS static class field, based on
the value of OBJ_SER_MODE, holds the lengths of the data to be serialized at that position
in the array. For instance if the first value we’re going to serialize is an integer data type we
would convert that to a four byte representation at that point in the serialization process and
we would have a 4 in the BINARY_LENGTHS array at that index.

In a similar fashion the static class field BINARY_OFFSETS is based on the value refer-
enced by the OBJ_SER_MODE static class field. In this case though the values referenced
by BINARY_OFFSETS are the positions a given value will have in the final byte array.

The reason why these class fields exist is to help streamline the binary serialization proc-
ess. Lastly, the TOTAL_LENGTH static class field, also based on the OBJECT_SER_MODE
value, references the expected final byte array length once serialization is complete.

The last static class member listed above, GEN_RANDOM_ATTRS line 47, is a point of some
discussion. As you will see a little later in this book the client code supports a “mock” mode
where game object wrappers are randomly created and populated with data to mimic an ac-
tual network game. If set to true, random values will be used for those game object wrap-
pers. This can be very useful in debugging because we can trace game objects easier
when they have unique values.

78

The next thing that we will review are the enumerations associated with this class. Let’s
take a look.

Eds3Server -> com.middlemind.Eds3.unity.GameObjectWrapperDefault.java

 
13 public enum GameObjectWrapperMode { 
14 UPDATE, 
15 CREATE,  
16 DESTROY,  
17 NONE,  
18 ERROR, 
19 SPECIAL_1, 
20 SPECIAL_2, 
21 SPECIAL_3, 
22 SPECIAL_4, 
23 SPECIAL_5, 
24 SPECIAL_6, 
25 SPECIAL_7, 
26 SPECIAL_8, 
27 SPECIAL_9, 
28 SPECIAL_10, 
29 ACTIVATE, 
30 DEACTIVATE,  
31 UPDATE_POS,  
32 UPDATE_ROT,  
33 UPDATE_VEL, 
34 IGNORE,  
35 DESTROY_INACTIVE_PLAYER_CHAR 
36 } 
37

 
The GameObjectWrapperMode enumeration isn’t as customizable as I would like but it
will do for the purposes of this book. Because we are sending information from one client,
network game player, to all the other game players in the current game room via the UDP
server. We need to sometimes provide extra information about the game object to the other
clients.

79

One GameObjectWrapperDefault class field that is serialized for transport is the
GameObjectWrapperMode, class field, mode. It can signal to other clients that a game ob-
ject doesn’t simply need to have its position or rotation updated but might also need to be
created or destroyed in the given player’s game.

For instance an enemy being destroyed would have to be destroyed on all player’s
screens. This enumeration provides some common hints to pass along and some that can
be defined by you, the game developer. There’s one more enumeration we will look at listed
below, short and simple.

Eds3Server -> com.middlemind.Eds3.unity.GameObjectWrapperDefault.java

 
38 public enum GameObjectWrapperSerMode { 
39 L1,  
40 L2  
41 } 
42

 
We’ve seen a little bit about serialization modes already, this is the enumeration that is
used to set those modes. In short L1 means level one serialization which is slightly more
efficient in that it sends less information and does slightly less work. You guessed it L2 seri-
alization stands for level 2 serialization which has the potential to be more efficient for cer-
tain game types at the expense of doing a bit more work and sending a bit more data.

That brings us to the non-static class field part of our review. This part of the review will
help us get an understanding of how the GameObjectWrapperDefault class works be-
fore we begin a detailed review of its methods. Let’s look at some code.

Eds3Server -> com.middlemind.Eds3.unity.GameObjectWrapperDefault.java

 
49 private float x = 0.0f; 
50 private float y = 0.0f; 
51 private float z = 0.0f;

80

 
The GameObjectWrapperDefault class is meant to be updated with pertinent informa-
tion from an object in the video game, most likely in the game loop after the update step.
For instance if you have a character walking across a map in a 2D game you would want to
store its x, y coordinate data as part of the game’s main loop.

This process stores the latest data from the game object in its associated GameObject-
WrapperDefault instance which can be sent to the server for distribution to other play-
ers. The class fields on lines 49 - 51 allow us to store 2D or 3D position information. You
might be sending 4 unused bytes if you are working on a networked 2D game but that
shouldn’t be too big of a deal. Plus you can always customize things as you see fit, hint,
hint.

Eds3Server -> com.middlemind.Eds3.unity.GameObjectWrapperDefault.java

 
52 private float rotX = 0.0f; 
53 private float rotY = 0.0f; 
54 private float rotZ = 0.0f; 
55 private float rotW = 0.0f;

 
In a similar fashion to the coordinate information above we may want to transmit rotation
data about a game object. To support this four class fields can be used to describe a game
object’s rotation in 3D space or in 2D space with some unused bytes. You would most likely
only have one rotation value for rotation in 2D space depending on the needs of your
game.

Eds3Server -> com.middlemind.Eds3.unity.GameObjectWrapperDefault.java

 
56 private float velX = 0.0f; 
57 private float velY = 0.0f; 
58 private float velZ = 0.0f;

 
There is also room for transmitting velocity data for the x, y, and z axis. Keep in mind

81

though that you can always override the meaning of these class fields in your game. They
will always be serialized and sent out to the server in the same way.

The next set of class fields provide detailed identification data about the GameObjectWrap-
perDefault instance.

Eds3Server -> com.middlemind.Eds3.unity.GameObjectWrapperDefault.java

 
59 private GameObjectWrapperMode mode = GameObjectWrapperMode.NONE;  
60 private int id;  
61 private int playerId;  
62 private boolean isNetworkObject;  
63 private boolean isPlayerCharacter;  
64 private long lastSerTimeStamp;  
65 private int typeId; 
66

 
The class field, mode, is used to provide extra information about the game object being
wrapped. For instance a mode of CREATE will indicate to a game client that a new local
game object will need to be created before its position and rotation information can be set.

On line 60 the id class field is a unique identifier for the given GameObjectWrapperDe-
fault instance. In both Java and C# we simply use the hash code assigned to objects by
the local virtual machine. The playerId class field references the identifier of the player
who owns this object. This is essentially the spawnId of the player who owns the given ob-
ject.

The isNetworkObject class field on line 62 references a value that indicates if this game
object needs to be sent to the server to be shared with other players. We don’t want to
share every game object in this way. For instance, we aren’t going to publish game objects
shared by other players because we aren’t responsible for them.

Another similar class field is the isPlayerCharacter class field, line 63, which indicates
if the game object it wraps is the player character game object. We have a special marker

82

for player character game objects because they are important to differentiate from other
game objects.

The class field, lastSerTimeStamp on line 64, records the last time the given GameOb-
jectWrapperDefault instance has been serialized. This meta data information could be
useful for tracking objects that haven’t been serialized in some time.

The last piece of identifying information we have is the typeId class field. This is an open
identifier that can be driven by your client side game logic. This enables you to add discern-
ing information about the game objects you are tracking and pass it along to other clients
through the server, very cool. That wraps up our review of the class fields, we’ll review the
class method outline next.

Eds3Server -> com.middlemind.Eds3.unity.GameObjectWrapperDefault.java

 
//Constructors 
public GameObjectWrapperDefault(boolean isNetObj, int pId, boolean isPcObj) { ... } 
public GameObjectWrapperDefault(GameObjectWrapper gow) { ... }

//Helper Methods 
public void PopulateAttrs() { ... } 
public boolean Equals(GameObjectWrapper gow) { ... } 
public static int Mode2Int(GameObjectWrapperMode m) { ... } 
public static GameObjectWrapperMode Int2Mode(int m) { ... }

//Main Methods 
public byte[] Serialize() { ... } 
public void Deserialize(byte[] dIn) { ... }

 
As per usual we’ll skip over any simple methods like getters and setters, to focus on the
more important methods listed above. Once we’ve completed the method review we’ll have
a better understanding of the GameObjectWrapperDefault class and its use. This will
also conclude our review of the client and server side supporting classes. Let’s dive in and
take a look at the constructors. We’ll choose the most complex constructor whenever we en-
counter an overloaded set of constructors.

83

Eds3Server -> com.middlemind.Eds3.unity.GameObjectWrapperDefault.java

 
094 public GameObjectWrapperDefault(boolean isNetObj, int pId, boolean isPcObj) { 
095 isNetworkObject = isNetObj; 
096 isPlayerCharacter = isPcObj;  
097 id = hashCode(); 
098 playerId = pId; 
099 mode = GameObjectWrapperMode.NONE;  
100 PopulateAttrs(); 
101 } 
102

 
One important constructor is listed above. It takes a few important arguments, isNetObj,
pId, and isPcObj which are used to set class fields on lines 95 - 98. Notice that the de-
fault value for the GameObjectWrapperDefault’s id field is the hashCode method of
the super class. This is a quick and easy way to get a unique identifier for the object in-
stance.

The mode class field, line 99, is set to a neutral value of NONE and the remaining class
fields are initialized by a call to the PopulateAttrs class helper method. Let’s take a look
at another important constructor.

Eds3Server -> com.middlemind.Eds3.unity.GameObjectWrapperDefault.java

 
103 public GameObjectWrapperDefault(GameObjectWrapper gow) { 
104 this.SetX(gow.GetX()); 
105 this.SetY(gow.GetY()); 
106 this.SetZ(gow.GetZ()); 
107 this.SetId(gow.GetId()); 
108 this.SetMode(gow.GetMode());  
109 this.SetRotW(gow.GetRotW()); 
110 this.SetRotX(gow.GetRotX()); 
111 this.SetRotY(gow.GetRotY()); 
112 this.SetRotZ(gow.GetRotZ()); 
113 this.SetTypeId(gow.GetTypeId()); 
114 this.SetVelX(gow.GetVelX()); 

84

115 this.SetVelY(gow.GetVelY()); 
116 this.SetVelZ(gow.GetVelZ()); 
117 this.SetPlayerId(gow.GetPlayerId());  
118 this.SetIsNetworkObject(gow.GetIsNetworkObject()); 
119 this.SetIsPlayerCharacter(gow.GetIsPlayerCharacter()); 
120 this.SetLastSerTimeStamp(gow.GetLastSerTimeStamp()); 
121 } 
122

 
The next constructor we’ll quickly review is listed in the previous code snippet. It is a fairly
straight forward implementation so we won’t spend too much time on it. This constructor
takes an existing GameObjectWrapper instance as an argument and uses it to initialize all
the class fields. The power of this particular constructor is subtle, it allows us to essentially
clone an existing GameObjectWrapper instance by creating a new instance with all the
same class field values.

Next up, we will review some of the helper methods before moving on to the main methods
of the GameObjectWrapperDefault class. The next method we’ll list below is the Popu-
lateAttrs method used by some constructors. Let us take a look at some code.

Eds3Server -> com.middlemind.Eds3.unity.GameObjectWrapperDefault.java

 
335 public void PopulateAttrs() { 
336 if (Eds3Client.MOCK_MODE_ON) { 
337 if (GEN_RANDOM_ATTRS) { 
338 SetX((float) (Math.random() * Short.MAX_VALUE)); 
339 SetY((float) (Math.random() * Short.MAX_VALUE)); 
340 SetZ((float) (Math.random() * Short.MAX_VALUE)); 
341 SetRotX((float) (Math.random() * 360)); 
342 SetRotY((float) (Math.random() * 360)); 
343 SetRotZ((float) (Math.random() * 360)); 
344 SetRotW((float) (Math.random() * 360)); 
345 SetVelX((float) (Math.random() * 360)); 
346 SetVelY((float) (Math.random() * 360)); 
347 SetVelZ((float) (Math.random() * 360)); 
348 SetMode((int) (Math.random() * 3)); 
349 SetTypeId((int) (Math.random() * 10)); 

85

350 } else { 
351 SetX(0.0f); 
352 SetY(0.0f); 
353 SetZ(0.0f); 
354 SetRotX(0.0f); 
355 SetRotY(0.0f); 
356 SetRotZ(0.0f); 
357 SetRotW(0.0f); 
358 SetVelX(0.0f); 
359 SetVelY(0.0f); 
360 SetVelZ(0.0f); 
361 SetMode(GameObjectWrapperDefault.Mode2Int(GameObjectWrapperMode.NONE));  
362 SetTypeId(0); 
363 } 
364 } 
365 } 
366

 
The PopulateAttrs helper method is most important when running server/client tests
from the console. The code supports a “mock” mode by default which is designed to fake
game object data so that client/server object publications can be tested. At the end of the
day the client/server code simply serializes and transmits game object data to a central
server.

It doesn’t really matter what that data is, outside of their data types that is, during these
tests. In some cases you can just use place holder values for data that isn’t being used by
your game engine. However, in some cases you want to make tracing the network mes-
sages a little easier so sending random values allows us to identify client and server log en-
tries associated with a specific transmission of data. This can come in handy during debug-
ging and testing.

This helper method is called by most of the class constructors and you’ll notice it relies on
both a class static field and a static field of the Eds3Client class. In this way the
Eds3Client class acts as a governor of the client helper classes by controlling certain
functionality through static class fields. Next up, we’ll take a look at the Equals helper
method, a super class override.

86

Eds3Server -> com.middlemind.Eds3.unity.GameObjectWrapperDefault.java

 
498 public boolean Equals(GameObjectWrapper gow) { 
499 if (gow != null) { 
500 if (Utils.VERBOSE) { 
501 Utils.wr("Comparing key " + gow.GetId() + " to " + this.GetId()); 
502 } 
503  
504 if (GameObjectWrapperDefault.OBJ_SER_MODE == GameObjectWrapperSerMode.L1) { 
505 if (gow.GetId() == this.GetId() 
506 && (gow.GetX() - this.GetX()) < Utils.ZERO 
507 && (gow.GetY() - this.GetY()) < Utils.ZERO 
508 && (gow.GetZ() - this.GetZ()) < Utils.ZERO 
509 && (gow.GetRotX() - this.GetRotX()) < Utils.ZERO 
510 && (gow.GetRotX() - this.GetRotX()) < Utils.ZERO 
511 && (gow.GetRotZ() - this.GetRotZ()) < Utils.ZERO 
512 && (gow.GetRotW() - this.GetRotW()) < Utils.ZERO 
513 && gow.GetPlayerId() == this.GetPlayerId() 
514 && gow.GetMode() == this.GetMode() 
515 && gow.GetTypeId() == this.GetTypeId() 
516) { 
517 return true; 
518 } else { 
519 return false; 
520 } 
521 } else { 
522 if (gow.GetId() == this.GetId() 
523 && (gow.GetX() - this.GetX()) < Utils.ZERO 
524 && (gow.GetY() - this.GetY()) < Utils.ZERO 
525 && (gow.GetZ() - this.GetZ()) < Utils.ZERO 
526 && (gow.GetRotX() - this.GetRotX()) < Utils.ZERO 
527 && (gow.GetRotX() - this.GetRotX()) < Utils.ZERO 
528 && (gow.GetRotZ() - this.GetRotZ()) < Utils.ZERO 
529 && (gow.GetRotW() - this.GetRotW()) < Utils.ZERO 
530 && (gow.GetVelX() - this.GetVelX()) < Utils.ZERO 
531 && (gow.GetVelY() - this.GetVelY()) < Utils.ZERO 
532 && (gow.GetVelZ() - this.GetVelZ()) < Utils.ZERO 
533 && gow.GetPlayerId() == this.GetPlayerId() 
534 && gow.GetMode() == this.GetMode() 
535 && gow.GetTypeId() == this.GetTypeId() 

87

536) { 
537 return true; 
538 } else { 
539 return false; 
540 } 
541 } 
542 } else { 
543 return false; 
544 } 
545 } 
546

 
This method compares the class fields’ referenced values to those of a passed in GameOb-
jectWrapper instance. Depending on the serialization mode different class fields are com-
pared. You can get a feel for what is compared by reviewing the code on lines 504 - 520
and lines 522 - 540.

Notice the use of a very small floating point value, Utils.ZERO, to determine if two float-
ing point numbers are close enough to each other to be considered zero. You should also
take notice of the fact that the comparisons mainly include position and rotation information
and the id, typeId, and mode fields of the GameObjectWrapperDefault class in-
stance.

We ignore certain boolean flags because they don’t really factor in to the test for a unique
object, at least there is enough information to make the determination without them. We’ll
be reviewing the Mode2Int method next. This method helps us use the values of the mode
enumeration as you’ll soon see.

Eds3Server -> com.middlemind.Eds3.unity.GameObjectWrapperDefault.java

 
547 public static int Mode2Int(GameObjectWrapperMode m) { 
548 if (m == GameObjectWrapperMode.UPDATE) { 
549 return 0; 
550 } else if (m == GameObjectWrapperMode.CREATE) { 
551 return 1; 
552 } else if (m == GameObjectWrapperMode.DESTROY) { 

88

553 return 2; 
554 } else if (m == GameObjectWrapperMode.NONE) { 
555 return 3; 
556 } else if (m == GameObjectWrapperMode.ERROR) { 
557 return 4; 
558 } else if (m == GameObjectWrapperMode.SPECIAL_1) { 
559 return 5; 
560 } else if (m == GameObjectWrapperMode.SPECIAL_2) { 
561 return 6; 
562 } else if (m == GameObjectWrapperMode.SPECIAL_3) { 
563 return 7; 
564 } else if (m == GameObjectWrapperMode.SPECIAL_4) { 
565 return 8; 
566 } else if (m == GameObjectWrapperMode.SPECIAL_5) { 
567 return 9; 
568 } else if (m == GameObjectWrapperMode.SPECIAL_6) { 
569 return 10; 
570 } else if (m == GameObjectWrapperMode.SPECIAL_7) { 
571 return 11; 
572 } else if (m == GameObjectWrapperMode.SPECIAL_8) { 
573 return 12; 
574 } else if (m == GameObjectWrapperMode.SPECIAL_9) { 
575 return 13; 
576 } else if (m == GameObjectWrapperMode.SPECIAL_10) { 
577 return 14; 
578 } else if (m == GameObjectWrapperMode.ACTIVATE) { 
579 return 15; 
580 } else if (m == GameObjectWrapperMode.DEACTIVATE) { 
581 return 16; 
582 } else if (m == GameObjectWrapperMode.UPDATE_POS) { 
583 return 17; 
584 } else if (m == GameObjectWrapperMode.UPDATE_ROT) { 
585 return 18; 
586 } else if (m == GameObjectWrapperMode.UPDATE_VEL) { 
587 return 19; 
588 } else if (m == GameObjectWrapperMode.IGNORE) { 
589 return 20; 
590 } else if (m == GameObjectWrapperMode.DESTROY_INACTIVE_PLAYER_CHAR) { 
591 return 21; 
592 } else { 
593 return 4; 

89

594 } 
595 } 
596

 
Because we’re dealing with a lot of serialized data, byte array representations, we can ex-
pect to interact with some class fields as if they were integers or other base data types.
This can make things difficult because the mode class field is an enumeration.

The Mode2Int method provides a mapping from each GameObjectWrapperMode entry
to an integer, it definitely comes in handy during the serialization process. Let’s quickly re-
view the reverse of this method the Int2Mode helper method.

Eds3Server -> com.middlemind.Eds3.unity.GameObjectWrapperDefault.java

 
597 public static GameObjectWrapperMode Int2Mode(int m) { 
598 if (m == 0) { 
599 return GameObjectWrapperMode.UPDATE; 
600 } else if (m == 1) { 
601 return GameObjectWrapperMode.CREATE; 
602 } else if (m == 2) { 
603 return GameObjectWrapperMode.DESTROY; 
604 } else if (m == 3) { 
605 return GameObjectWrapperMode.NONE; 
606 } else if (m == 4) { 
607 return GameObjectWrapperMode.ERROR; 
608 } else if (m == 5) { 
609 return GameObjectWrapperMode.SPECIAL_1; 
610 } else if (m == 6) { 
611 return GameObjectWrapperMode.SPECIAL_2; 
612 } else if (m == 7) { 
613 return GameObjectWrapperMode.SPECIAL_3; 
614 } else if (m == 8) { 
615 return GameObjectWrapperMode.SPECIAL_4; 
616 } else if (m == 9) { 
617 return GameObjectWrapperMode.SPECIAL_5; 
618 } else if (m == 10) { 
619 return GameObjectWrapperMode.SPECIAL_6; 

90

620 } else if (m == 11) { 
621 return GameObjectWrapperMode.SPECIAL_7; 
622 } else if (m == 12) { 
623 return GameObjectWrapperMode.SPECIAL_8; 
624 } else if (m == 13) { 
625 return GameObjectWrapperMode.SPECIAL_9; 
626 } else if (m == 14) { 
627 return GameObjectWrapperMode.SPECIAL_10; 
628 } else if (m == 15) { 
629 return GameObjectWrapperMode.ACTIVATE; 
630 } else if (m == 16) { 
631 return GameObjectWrapperMode.DEACTIVATE; 
632 } else if (m == 17) { 
633 return GameObjectWrapperMode.UPDATE_POS; 
634 } else if (m == 18) { 
635 return GameObjectWrapperMode.UPDATE_ROT; 
636 } else if (m == 19) { 
637 return GameObjectWrapperMode.UPDATE_VEL;  
638 } else if (m == 20) { 
639 return GameObjectWrapperMode.IGNORE; 
640 } else if (m == 21) { 
641 return GameObjectWrapperMode.DESTROY_INACTIVE_PLAYER_CHAR; 
642 } else { 
643 return GameObjectWrapperMode.ERROR; 
644 } 
645 }

 
You can quickly see that the Int2Mode method reverses the Mode2Int method and pro-
vides convenient help during deserialization. The downside to using an enumeration here is
the complexity required to make it a data driven enumeration. The integer based field,
typeId, performs a similar role as a customizable identifier and is much easier to work
with. Don’t worry we’re almost done. We’re moving on to the main class methods now be-
ginning with the Serialization method.

Keep in mind the importance of the next two methods, Serialize and Deserialize. No-
tice that game object wrapper instances serialize their own class fields based on the seriali-
zation mode L1 or L2. In this way the serialization of more complex lists of game object

91

wrappers is based on the same fundamental, encapsulated, serialization code. Now, let’s
take a look at some methods.

Eds3Server -> com.middlemind.Eds3.unity.GameObjectWrapperDefault.java

 
368 public byte[] Serialize() { 
369 byte[] ret = new byte[TOTAL_LENGTH]; 
370 this.lastSerTimeStamp = System.currentTimeMillis(); 
371  
372 if (GameObjectWrapperDefault.OBJ_SER_MODE == GameObjectWrapperSerMode.L1) { 
373 byte[] bX = Converter.toByte(this.GetX()); 
374 byte[] bY = Converter.toByte(this.GetY()); 
375 byte[] bZ = Converter.toByte(this.GetZ()); 
376 byte[] bRotX = Converter.toByte(this.GetRotX()); 
377 byte[] bRotY = Converter.toByte(this.GetRotY()); 
378 byte[] bRotZ = Converter.toByte(this.GetRotZ()); 
379 byte[] bRotW = Converter.toByte(this.GetRotW()); 
380 byte[] bNid = Converter.toByte(this.GetId()); 
381 byte[] bPid = Converter.toByte(this.GetPlayerId()); 
382 byte[] bMode = Converter.toByte(this.GetMode()); 
383 byte[] bType = Converter.toByte(this.GetTypeId()); 
384 byte[] bLser = Converter.toByte(this.GetLastSerTimeStamp()); 
385  
386 System.arraycopy(bX, 0, ret, BINARY_OFFSETS[0], BINARY_LENGTHS[0]); 
387 System.arraycopy(bY, 0, ret, BINARY_OFFSETS[1], BINARY_LENGTHS[1]); 
388 System.arraycopy(bZ, 0, ret, BINARY_OFFSETS[2], BINARY_LENGTHS[2]); 
389 System.arraycopy(bRotX, 0, ret, BINARY_OFFSETS[3], BINARY_LENGTHS[3]); 
390 System.arraycopy(bRotY, 0, ret, BINARY_OFFSETS[4], BINARY_LENGTHS[4]); 
391 System.arraycopy(bRotZ, 0, ret, BINARY_OFFSETS[5], BINARY_LENGTHS[5]); 
392 System.arraycopy(bRotW, 0, ret, BINARY_OFFSETS[6], BINARY_LENGTHS[6]); 
393 System.arraycopy(bNid, 0, ret, BINARY_OFFSETS[7], BINARY_LENGTHS[7]); 
394 System.arraycopy(bPid, 0, ret, BINARY_OFFSETS[8], BINARY_LENGTHS[8]); 
395 System.arraycopy(bMode, 0, ret, BINARY_OFFSETS[9], BINARY_LENGTHS[9]); 
396 System.arraycopy(bType, 0, ret, BINARY_OFFSETS[10], BINARY_LENGTHS[10]); 
397 System.arraycopy(bLser, 0, ret, BINARY_OFFSETS[11], BINARY_LENGTHS[11]); 
398 } else { 
399 byte[] bX = Converter.toByte(this.GetX()); 
400 byte[] bY = Converter.toByte(this.GetY()); 
401 byte[] bZ = Converter.toByte(this.GetZ()); 
402 byte[] bRotX = Converter.toByte(this.GetRotX()); 

92

403 byte[] bRotY = Converter.toByte(this.GetRotY()); 
404 byte[] bRotZ = Converter.toByte(this.GetRotZ()); 
405 byte[] bRotW = Converter.toByte(this.GetRotW()); 
406 byte[] bVelX = Converter.toByte(this.GetVelX()); 
407 byte[] bVelY = Converter.toByte(this.GetVelY()); 
408 byte[] bVelZ = Converter.toByte(this.GetVelZ()); 
409 byte[] bNid = Converter.toByte(this.GetId()); 
410 byte[] bPid = Converter.toByte(this.GetPlayerId()); 
411 byte[] bMode = Converter.toByte(this.GetMode()); 
412 byte[] bType = Converter.toByte(this.GetTypeId()); 
413 byte[] bLser = Converter.toByte(this.GetLastSerTimeStamp()); 
414  
415 System.arraycopy(bX, 0, ret, BINARY_OFFSETS[0], BINARY_LENGTHS[0]); 
416 System.arraycopy(bY, 0, ret, BINARY_OFFSETS[1], BINARY_LENGTHS[1]); 
417 System.arraycopy(bZ, 0, ret, BINARY_OFFSETS[2], BINARY_LENGTHS[2]); 
418 System.arraycopy(bRotX, 0, ret, BINARY_OFFSETS[3], BINARY_LENGTHS[3]); 
419 System.arraycopy(bRotY, 0, ret, BINARY_OFFSETS[4], BINARY_LENGTHS[4]); 
420 System.arraycopy(bRotZ, 0, ret, BINARY_OFFSETS[5], BINARY_LENGTHS[5]); 
421 System.arraycopy(bRotW, 0, ret, BINARY_OFFSETS[6], BINARY_LENGTHS[6]); 
422 System.arraycopy(bVelX, 0, ret, BINARY_OFFSETS[7], BINARY_LENGTHS[7]); 
423 System.arraycopy(bVelY, 0, ret, BINARY_OFFSETS[8], BINARY_LENGTHS[8]); 
424 System.arraycopy(bVelZ, 0, ret, BINARY_OFFSETS[9], BINARY_LENGTHS[9]); 
425 System.arraycopy(bNid, 0, ret, BINARY_OFFSETS[10], BINARY_LENGTHS[10]); 
426 System.arraycopy(bPid, 0, ret, BINARY_OFFSETS[11], BINARY_LENGTHS[11]); 
427 System.arraycopy(bMode, 0, ret, BINARY_OFFSETS[12], BINARY_LENGTHS[12]); 
428 System.arraycopy(bType, 0, ret, BINARY_OFFSETS[13], BINARY_LENGTHS[13]); 
429 System.arraycopy(bLser, 0, ret, BINARY_OFFSETS[14], BINARY_LENGTHS[14]); 
430 } 
431 return ret; 
432 } 
433

 
Take some time to look over the method, notice the simplicity of its implementation. The
method could have been designed to be more data driven, however, that would increase
the overhead and complexity of a method that could be called hundreds of times a second.
Depending on the value OBJ_SER_MODE, on line 372, each important class field is con-
verted to a byte array representation of the given data type. Following the variable initializa-
tion of byte arrays, on lines 386 - 397, each byte array is copied into a large final array to
be returned by the method.

93

The second branch in the method listed above is for an L2 serialization mode which follows
the same exact coding pattern as the L1 serialization code except with more values in-
cluded in the serialization process. Notice how each System.arraycopy call uses the pre-
determined BINARY_OFFSETS and BINARY_LENGTHS to simplify the calling logic by using
information that we determined ahead of time. Let’s take a look at the Deserialization
method next.

Eds3Server -> com.middlemind.Eds3.unity.GameObjectWrapperDefault.java

 
435 public void Deserialize(byte[] dIn) { 
436 if (GameObjectWrapperDefault.OBJ_SER_MODE == GameObjectWrapperSerMode.L1) { 
437 byte[] bX = Utils.PeelByteArray(dIn, BINARY_OFFSETS[0], BINARY_LENGTHS[0]); 
438 byte[] bY = Utils.PeelByteArray(dIn, BINARY_OFFSETS[1], BINARY_LENGTHS[1]); 
439 byte[] bZ = Utils.PeelByteArray(dIn, BINARY_OFFSETS[2], BINARY_LENGTHS[2]); 
440 byte[] bRotX = Utils.PeelByteArray(dIn, BINARY_OFFSETS[3], BINARY_LENGTHS[3]); 
441 byte[] bRotY = Utils.PeelByteArray(dIn, BINARY_OFFSETS[4], BINARY_LENGTHS[4]); 
442 byte[] bRotZ = Utils.PeelByteArray(dIn, BINARY_OFFSETS[5], BINARY_LENGTHS[5]); 
443 byte[] bRotW = Utils.PeelByteArray(dIn, BINARY_OFFSETS[6], BINARY_LENGTHS[6]); 
444 byte[] bNid = Utils.PeelByteArray(dIn, BINARY_OFFSETS[7], BINARY_LENGTHS[7]); 
445 byte[] bPid = Utils.PeelByteArray(dIn, BINARY_OFFSETS[8], BINARY_LENGTHS[8]); 
446 byte[] bMode = Utils.PeelByteArray(dIn, BINARY_OFFSETS[9], BINARY_LENGTHS[9]); 
447 byte[] bType = Utils.PeelByteArray(dIn, BINARY_OFFSETS[10], BINARY_LENGTHS[10]); 
448 byte[] bLser = Utils.PeelByteArray(dIn, BINARY_OFFSETS[11], BINARY_LENGTHS[11]); 
449  
450 this.SetX(Converter.toFloat(bX)); 
451 this.SetY(Converter.toFloat(bY)); 
452 this.SetZ(Converter.toFloat(bZ)); 
453 this.SetRotX(Converter.toFloat(bRotX)); 
454 this.SetRotY(Converter.toFloat(bRotY)); 
455 this.SetRotZ(Converter.toFloat(bRotZ)); 
456 this.SetRotW(Converter.toFloat(bRotW)); 
457 this.SetId(Converter.toInt(bNid)); 
458 this.SetPlayerId(Converter.toInt(bPid)); 
459 this.SetMode(Converter.toInt(bMode)); 
460 this.SetTypeId(Converter.toInt(bType)); 
461 this.SetLastSerTimeStamp(Converter.toLong(bLser)); 
462 } else { 
463 byte[] bX = Utils.PeelByteArray(dIn, BINARY_OFFSETS[0], BINARY_LENGTHS[0]); 
464 byte[] bY = Utils.PeelByteArray(dIn, BINARY_OFFSETS[1], BINARY_LENGTHS[1]); 

94

465 byte[] bZ = Utils.PeelByteArray(dIn, BINARY_OFFSETS[2], BINARY_LENGTHS[2]); 
466 byte[] bRotX = Utils.PeelByteArray(dIn, BINARY_OFFSETS[3], BINARY_LENGTHS[3]); 
467 byte[] bRotY = Utils.PeelByteArray(dIn, BINARY_OFFSETS[4], BINARY_LENGTHS[4]); 
468 byte[] bRotZ = Utils.PeelByteArray(dIn, BINARY_OFFSETS[5], BINARY_LENGTHS[5]); 
469 byte[] bRotW = Utils.PeelByteArray(dIn, BINARY_OFFSETS[6], BINARY_LENGTHS[6]); 
470 byte[] bVelX = Utils.PeelByteArray(dIn, BINARY_OFFSETS[7], BINARY_LENGTHS[7]); 
471 byte[] bVelY = Utils.PeelByteArray(dIn, BINARY_OFFSETS[8], BINARY_LENGTHS[8]); 
472 byte[] bVelZ = Utils.PeelByteArray(dIn, BINARY_OFFSETS[9], BINARY_LENGTHS[9]); 
473 byte[] bNid = Utils.PeelByteArray(dIn, BINARY_OFFSETS[10], BINARY_LENGTHS[10]); 
474 byte[] bPid = Utils.PeelByteArray(dIn, BINARY_OFFSETS[11], BINARY_LENGTHS[11]); 
475 byte[] bMode = Utils.PeelByteArray(dIn, BINARY_OFFSETS[12], BINARY_LENGTHS[12]); 
476 byte[] bType = Utils.PeelByteArray(dIn, BINARY_OFFSETS[13], BINARY_LENGTHS[13]); 
477 byte[] bLser = Utils.PeelByteArray(dIn, BINARY_OFFSETS[14], BINARY_LENGTHS[14]); 
478  
479 this.SetX(Converter.toFloat(bX)); 
480 this.SetY(Converter.toFloat(bY)); 
481 this.SetZ(Converter.toFloat(bZ)); 
482 this.SetRotX(Converter.toFloat(bRotX)); 
483 this.SetRotY(Converter.toFloat(bRotY)); 
484 this.SetRotZ(Converter.toFloat(bRotZ)); 
485 this.SetRotW(Converter.toFloat(bRotW)); 
486 this.SetVelX(Converter.toFloat(bVelX)); 
487 this.SetVelY(Converter.toFloat(bVelY)); 
488 this.SetVelZ(Converter.toFloat(bVelZ)); 
489 this.SetId(Converter.toInt(bNid)); 
490 this.SetPlayerId(Converter.toInt(bPid)); 
491 this.SetMode(Converter.toInt(bMode)); 
492 this.SetTypeId(Converter.toInt(bType)); 
493 this.SetLastSerTimeStamp(Converter.toLong(bLser)); 
494 } 
495 } 
496

 
We will quickly review the Deserialization method as we wrap up the main method re-
view of the GameObjectWrapperDefault class. Notice the similarity in design, structure,
and naming convention when compared to the Serialize method. Again, the implementa-
tion of this method is simple, direct and efficient. It may not be as flexible as we would like
but it is designed for performance.

95

This is an approach you’ll see over and over again in the client/server code. Simple, more
direct code that executes quickly and cleanly. You’ll notice that we get to utilize the BI-
NARY_OFFSETS and BINARY_LENGTHS static class fields to also streamline the deserializa-
tion process.

That concludes the review of the GameObjectWrapperDefault class. Take the time to
review the interface the class is based on. Think about how you can implement your own
classes or extend existing functionality. The next supporting class up for review is the
GameObjectManagerDefault class. This class does what it sounds like, it takes care of
managing all the different game objects.

Let’s get into the code review by going over the class fields, there are no static class mem-
bers or relevant enumerations to worry about, so let’s jump right in.

Eds3Server -> com.middlemind.Eds3.unity.GameObjectManagerDefault.java

 
15 private Hashtable<Integer, GameObjectWrapper> gameObjects; 
16 private Hashtable<Integer, GameObjectWrapper> networkGameObjects; 
17 private Hashtable<Integer, GameObjectWrapper> inNetworkGameObjects; 
18 private HandleGameObjectWrapperSerialization serH = null; 
19 private GameObjectWrapper playerChar = null;  
20 private Hashtable<String, Integer> nameToGameObjectId = null; 
21

 
We only have a few class fields to review so let’s get it done. This class is a GameObject
manager and as such it has a few data structures for storing references to different catego-
ries of game object wrappers. On line 15 we have the gameObjects class field which is
used to store game object wrappers that we aren’t responsible for publishing information
about.

Next up, on line 16, we have the networkGameObjects class field which is used to store
network game object wrappers that we are responsible for publishing information about.
The following class field is similar to the previous two, the inNetworkGameObjects class
field. This class field is slightly different in that it is used to store references to game object

96

wrappers that have been received from the UDP client in response to an object publication
network interaction.

This is a place holder for the game object wrappers that were received from the server until
they can be processed in the next game frame. Short and sweet, we are almost done with
the class field review already. On line 18 we have the HandleGameObjectWrapperSeri-
alization customization class, serH, which supports adding customization to the seriali-
zation of game object wrappers.

The following field, playerChar, is explicitly for storing a reference to the local player char-
acter. We could keep all the different types of data we’re storing in one large data structure
but then we would need to do a lot of scanning and tests to find what we’re looking for. It
makes more sense to keep things separated into buckets of specific game object wrapper
types.

Last but not least we have a more centralized storage data structure, the nameToGameOb-
jectId class field, which maintains a reference to all objects in the game. It maintains a
lookup table that takes the names of the game object and returns the game object’s unique
ID. Take a moment to think about that. Using that ID we can then pull the GameObject-
Wrapper reference from some of the other data structures we’ve just reviewed. We’ll con-
tinue our review of the class by taking a look at some important class methods next.

Eds3Server -> com.middlemind.Eds3.GameObjectManagerDefault.java

 
//Constructors 
public GameObjectManagerDefault() { ... } 
 
//Helper Methods 
public void RegisterGameObjectName(String name, int id) { ... } 
public void AddGameObject(GameObjectWrapper obj, boolean isNetwork) { ... } 
public void AddInNetworkGameObject(GameObjectWrapper obj) { ... } 
 
//Serializers 
public byte[] SerializeNetworkGameObjects() { ... } 
public byte[] SerializeGameObjects() { ... } 
public byte[] SerializeDirect(Hashtable<Integer, GameObjectWrapper> bIn2) { ... } 
 

97

//Deserializers 
public void DeserializeNetworkGameObjects(byte[] bIn) { ... } 
public void DeserializeGameObjects(byte[] bIn) { ... } 
public Hashtable<Integer, GameObjectWrapper> Deserialize2HashtableDirect(byte[] bIn) { ... }

 
First up we’ll take care of reviewing the constructor. It’s a simple one so let’s get it out of the
way.

Eds3Server -> com.middlemind.Eds3.GameObjectManagerDefault.java

 
22 public GameObjectManagerDefault() { 
23 this.playerChar = new GameObjectWrapperDefault(); 
24 this.gameObjects = new Hashtable(); 
25 this.networkGameObjects = new Hashtable(); 
26 this.nameToGameObjectId = new Hashtable(); 
27 this.inNetworkGameObjects = new Hashtable(); 
28 } 
29

 
Very straight forward, the constructor initializes all the data structure class fields and even
initializes the playerChar. The next method we’ll look at is the RegisterGameObject-
Name class method which handles registering game objects in the nameToGameObjectId
data structure.

Eds3Server -> com.middlemind.Eds3.GameObjectManagerDefault.java

 
71 public void RegisterGameObjectName(String name, int id) { 
72 if (this.nameToGameObjectId.containsKey(name)) { 
73 this.nameToGameObjectId.remove(name); 
74 } 
75 this.nameToGameObjectId.put(name, id); 
76 } 
77

98

 
This method is also fairly straight forward but don’t ignore its significance. This simple data
structure and method combination can create a central lookup for all the objects in the
game. On lines 72 - 74 we check to see if a GameObject’s name has already been regis-
tered. This implies that the underlying game engine maintains unique names for GameOb-
jects. If an existing entry is found it is removed from the data structure. A clean entry into
the nameToGameObjectId Hashtable is added before the method returns. This ensures
the data structure is clean and up to date each time it is called.

The next method we’ll review is the AddGameObject helper method. This is an intake
method used to register GameObjectWrapper instances by their unique ID.

Eds3Server -> com.middlemind.Eds3.GameObjectManagerDefault.java

 
79 public void AddGameObject(GameObjectWrapper obj, boolean isNetwork) { 
80 if (isNetwork) { 
81 if (this.networkGameObjects.containsKey(obj.GetId())) { 
82 this.networkGameObjects.remove(obj.GetId()); 
83 } 
84  
85 this.networkGameObjects.put(obj.GetId(), obj); 
86 } else { 
87 if (this.gameObjects.containsKey(obj.GetId())) { 
88 this.gameObjects.remove(obj.GetId()); 
89 } 
90  
91 this.gameObjects.put(obj.GetId(), obj); 
92 } 
93 } 
94

 
This clever little helper method is designed to intake new GameObjectWrapper objects
and route them to the correct storage data structure. Remember not only do GameObject-
Wrappers hold important information about the position and rotation of certain game ob-
jects but a game specific customized version of the class can hold a reference to the actual

99

game object. In our case this would be a Unity 3D API GameObject class instance. You’ll
get more exposure to this in parts 10 - 13 of this book.

The method implementation is very direct. If the isNetwork argument is true then the net-
workGameObjects data structure is used to store the passed in object, obj. A check is
performed to clean any existing entries with the same ID and the obj’s ID is used as the
key reference when adding the entry to the Hashtable, lines 85 and 91.

The same logic is used if the isNetwork argument is false except that the method will use
the gameObjects data structure instead. This intake method makes it very easy to add
new information about game objects to the GameObjectManager while keeping the net-
work and non-network game objects separate.

Eds3Server -> com.middlemind.Eds3.GameObjectManagerDefault.java

 
096 public void AddInNetworkGameObject(GameObjectWrapper obj) { 
097 if (this.inNetworkGameObjects.containsKey(obj.GetId())) { 
098 this.inNetworkGameObjects.remove(obj.GetId()); 
099 } 
100  
101 this.inNetworkGameObjects.put(obj.GetId(), obj); 
102 } 
103

 
The next class method we’ll review, listed in the previous code snippet, is the AddInNet-
workGameObject helper method. This method is very similar to the AddGameObject
method we just reviewed so I won’t go into any great detail about it. The important thing to
note here is that this method is also an intake method but for data coming down from the
UDP client.

Because the GameObjectWrapper object has a unique ID we can process the data we’ve
received from the network and use it to find the corresponding GameObject, updating its
position and rotation values. While this may, at first glance, seem unimportant if you think
about the network receiving information every few milliseconds and updating local game ob-
jects every few milliseconds you can see how network game play emerges.

100

Eds3Server -> com.middlemind.Eds3.GameObjectManagerDefault.java

 
105 public byte[] SerializeNetworkGameObjects() { 
106 return this.SerializeDirect(this.networkGameObjects); 
107 } 
108  
109  
110 public byte[] SerializeGameObjects() { 
111 return this.SerializeDirect(this.gameObjects); 
112 } 
113

 
We’ll cover the next two class methods in one shot. The SerializeNetworkGameOb-
jects method passes the networkGameObjects class field to a lower level serialization
method and returns the results. Similarly on line 110 the SerializeGameObjects class
method passes the gameObjects class method to the same lower level serialization
method and also returns the results. This is an example of good encapsulation as the under-
lying serialization method can be reused.

Next, we’ll take a look at the SerializeDirect method.

Eds3Server -> com.middlemind.Eds3.GameObjectManagerDefault.java

 
180 public byte[] SerializeDirect(Hashtable<Integer, GameObjectWrapper> bIn2) { 
181 Hashtable<Integer, GameObjectWrapper> bIn = new Hashtable<Integer, GameObjectWrap-
per>(bIn2);  
182 int len = bIn.size(); 
183  
184 boolean hasPlayerChar = false; 
185 if (this.playerChar != null) { 
186 hasPlayerChar = true; 
187 len += 1; 
188 } 
189  
190 int off = 0;  
191 int totalLen = len * GameObjectWrapperDefault.TOTAL_LENGTH; 

101

192 byte[] b; 
193 byte[] ret = new byte[totalLen]; 
194 GameObjectWrapper gow2; 
195  
196 if (hasPlayerChar) { 
197 gow2 = this.playerChar; 
198  
199 if (this.serH != null) { 
200 gow2 = this.serH.BeforeSerializeGow(gow2); 
201 } 
202  
203 b = gow2.Serialize(); 
204  
205 if (this.serH != null) { 
206 b = this.serH.AfterSerializeGow(b, gow2); 
207 } 
208  
209 System.arraycopy(b, 0, ret, off, GameObjectWrapperDefault.TOTAL_LENGTH); 
210  
211 if (this.serH != null) { 
212 this.serH.SerializeIteration(gow2, b, ret, off); 
213 } 
214  
215 off += b.length; 
216 } 
217  
218 for (GameObjectWrapper gow : bIn.values()) { 
219 gow2 = gow; 
220  
221 if (this.serH != null) { 
222 gow2 = this.serH.BeforeSerializeGow(gow2); 
223 } 
224  
225 b = gow2.Serialize(); 
226  
227 if (this.serH != null) { 
228 b = this.serH.AfterSerializeGow(b, gow2); 
229 } 
230  
231 System.arraycopy(b, 0, ret, off, GameObjectWrapperDefault.TOTAL_LENGTH); 
232  

102

233 if (this.serH != null) { 
234 this.serH.SerializeIteration(gow2, b, ret, off); 
235 } 
236  
237 off += b.length; 
238 } 
239 return ret; 
240 } 
241

 
The SerializeDirect main method is designed to receive a Hashtable argument that
matches the class fields gameObjects, networkGameObjects, and inNetworkGameOb-
jects. The first thing we do on line 181 is copy over the Hashtable entries by initializing
a new data structure of the same type with the bIn2 argument.

Next, the length of the data structure is stored on line 182 in the len variable. On lines 184
to 188 we test to see if the playerChar class field has been set and if so we toggle the lo-
cal variable hasPlayerChar and increment the len variable. Because we store the player
character data in a separate class field we run this check so we know if we need to add in-
formation about the player character into the serialized data.

The block of codes on 190 to 194 declares a set of local variables that are used in the seri-
alization process. The off variable tracks the current offset into the serialization array. The
totalLength variable references the total expected length of the resulting binary array.
Notice that we use the TOTAL_LENGTH class field of the GameObjectWrapper class to
calculate the expected length.

On line 192 the b byte array is a temporary variable used in building the final serialized
data. The ret variable on line 193 holds the serialized data that the method will eventually
return. Lastly the GameObjectWrapper instance, gow2, is a temporary variable used in
the serialization process, line 194.

I’ll post the next block of code below so you don’t have to keep looking back. I won’t always
be able to do this but I’ll try to when I can.

Eds3Server -> com.middlemind.Eds3.GameObjectManagerDefault.java

103

 
196 if (hasPlayerChar) { 
197 gow2 = this.playerChar; 
198  
199 if (this.serH != null) { 
200 gow2 = this.serH.BeforeSerializeGow(gow2); 
201 } 
202  
203 b = gow2.Serialize(); 
204  
205 if (this.serH != null) { 
206 b = this.serH.AfterSerializeGow(b, gow2); 
207 } 
208  
209 System.arraycopy(b, 0, ret, off, GameObjectWrapperDefault.TOTAL_LENGTH); 
210  
211 if (this.serH != null) { 
212 this.serH.SerializeIteration(gow2, b, ret, off); 
213 } 
214  
215 off += b.length; 
216 } 
217

 
The code block on lines 196 - 216 executes if there is a hasPlayerChar class field set.
There are three places in this code block where we check for customization class, serH.
We’ll cover customization classes later on so for now I’ll just jump past them. They are used
to extend the functionality of the GameObjectManagerDefault class by allowing another
class a chance to alter the behavior of the method.

On line 197 the local variable gow2 is set to reference the playerChar class field. On line
203 the local variable b is set to hold the serialization of the playerChar GameObject-
Wrapper. Next, on line 209 we copy the local variable b into the final return byte array,
ret. Lastly we increment the offset by the length of the binary data b.

Eds3Server -> com.middlemind.Eds3.GameObjectManagerDefault.java

104

 
218 for (GameObjectWrapper gow : bIn.values()) { 
219 gow2 = gow; 
220  
221 if (this.serH != null) { 
222 gow2 = this.serH.BeforeSerializeGow(gow2); 
223 } 
224  
225 b = gow2.Serialize(); 
226  
227 if (this.serH != null) { 
228 b = this.serH.AfterSerializeGow(b, gow2); 
229 } 
230  
231 System.arraycopy(b, 0, ret, off, GameObjectWrapperDefault.TOTAL_LENGTH); 
232  
233 if (this.serH != null) { 
234 this.serH.SerializeIteration(gow2, b, ret, off); 
235 } 
236  
237 off += b.length; 
238 } 
239 return ret;

 
The next code block up for review is listed in the previous snippet. It is very similar to the
first one we reviewed except that it runs in a for loop. Due to the similarity I won’t review it
in any great detail. This code simply runs exactly the same except it is designed to work
with multiple GameObjectWrapper instances. Each one is processed and added to the
outgoing byte array.

Take a moment to realize that this method always attempts to add the playerChar class
field to any outgoing data. This may seem a bit strange but in a video game the player char-
acter is of utmost importance so it works out in practice. The second thing you should no-
tice is that this method has no concept of how the data is actually serialized and it doesn’t
need to know. It only really needs to know the length of the serialized data and that’s it.

Next up, we’ll quickly cover the other side of the coin, the deserialization methods. Let’s
look at some code.

105

Eds3Server -> com.middlemind.Eds3.GameObjectManagerDefault.java

 
382 public void DeserializeNetworkGameObjects(byte[] bIn) { 
383 this.networkGameObjects = this.Deserialize2HashtableDirect(bIn); 
384 } 
385  
386  
387 public void DeserializeGameObjects(byte[] bIn) { 
388 this.gameObjects = this.Deserialize2HashtableDirect(bIn); 
389 } 
390

 
The two methods listed previously are very simple and really follow the exact same pattern
as some of the serialization methods we’ve just seen. I won’t go into any detail here. Take a
look at them and make sure they make sense to you. Essentially they deserialize a byte ar-
ray argument into a class field determined by the method called. Short and sweet.

Now let’s take a look at the Deserialize2HashtableDirect method

Eds3Server -> com.middlemind.Eds3.GameObjectManagerDefault.java

 
319 public Hashtable<Integer, GameObjectWrapper> Deserialize2HashtableDirect(byte[] bIn) { 
320 int len = bIn.length; 
321 Hashtable<Integer, GameObjectWrapper> ret = new Hashtable(); 
322 GameObjectWrapper gow = null; 
323 int msgLen = GameObjectWrapperDefault.TOTAL_LENGTH; 
324 byte[] d = null; 
325 int pos = 0; 
326  
327 if (this.playerChar != null) { 
328 d = new byte[msgLen]; 
329 System.arraycopy(bIn, pos, d, 0, msgLen); 
330 gow = new GameObjectWrapperDefault(); 
331  
332 if (this.serH != null) { 
333 d = this.serH.BeforeDeserializeGow(d, gow); 

106

334 } 
335  
336 gow.Deserialize(d); 
337  
338 if (this.serH != null) { 
339 gow = this.serH.AfterDeserializeGow(gow); 
340 } 
341  
342 this.playerChar = gow; 
343  
344 if (this.serH != null) { 
345 this.serH.DeserializeIteration(gow, d, ret, pos); 
346 } 
347  
348 pos += msgLen; 
349 len -= msgLen; 
350 } 
351  
352 while (len >= msgLen) { 
353 d = new byte[msgLen]; 
354 System.arraycopy(bIn, pos, d, 0, msgLen); 
355 gow = new GameObjectWrapperDefault(); 
356  
357 if (this.serH != null) { 
358 d = this.serH.BeforeDeserializeGow(d, gow); 
359 } 
360  
361 gow.Deserialize(d); 
362  
363 if (this.serH != null) { 
364 gow = this.serH.AfterDeserializeGow(gow); 
365 } 
366  
367 ret.put(gow.GetId(), gow); 
368  
369 if (this.serH != null) { 
370 this.serH.DeserializeIteration(gow, d, ret, pos); 
371 } 
372  
373 pos += msgLen; 
374 len -= msgLen; 

107

375 } 
376  
377 Utils.wr("Found " + ret.size() + " game objects."); 
378 return ret; 
379 } 
380

 
The deserialize method works in a slightly strange way as you’ll see in a moment. The ex-
pected argument bIn is an array of bytes. On lines 320 - 325 a set of local variables are de-
clared. The len variable on line 320 is used to track the total length of binary data passed
into the method in the bIn argument. The ret variable is a Hashtable that will hold all
the deserialized data to be returned.

On line 322 the gow variable is a temporary variable used to hold the results of the deseriali-
zation process. The msgLen variable references the total expected length of one serialized
GameObjectWrapperDefault instance. Lastly the binary array d is used to hold seg-
ments of the passed in byte array data while the pos variable tracks how far along in the de-
serialization process we are.

Eds3Server -> com.middlemind.Eds3.GameObjectManagerDefault.java

 
327 if (this.playerChar != null) { 
328 d = new byte[msgLen]; 
329 System.arraycopy(bIn, pos, d, 0, msgLen); 
330 gow = new GameObjectWrapperDefault(); 
331  
332 if (this.serH != null) { 
333 d = this.serH.BeforeDeserializeGow(d, gow); 
334 } 
335  
336 gow.Deserialize(d);  
337  
338 if (this.serH != null) { 
339 gow = this.serH.AfterDeserializeGow(gow); 
340 } 
341  
342 this.playerChar = gow; 

108

343  
344 if (this.serH != null) { 
345 this.serH.DeserializeIteration(gow, d, ret, pos); 
346 } 
347  
348 pos += msgLen; 
349 len -= msgLen; 
350 }

 
The first part of this function, after the variable declaration, is a bit strange. If the player-
Char class field is set then the serialized data is thought to contain a serialized GameOb-
jectWrapper for the player character. The length of bytes used to represent the object is
copied into the temporary variable b, line 329, and a new temporary GameObjectWrapper-
Default, gow, is initialized on line 330.

The data is deserialized into the gow variable, line 336, and assigned to the playerChar
class field on line 342. Lastly on lines 348 - 349 the deserialization offset is incremented
and the total byte array length is decremented indicating we’ve processed one object from
the array. There are hooks in place, as we’ve seen before on the serialization side of things,
for customizing the process. I’ll cover customization classes in Part 9 so I won’t go into any
detail about that code here.

Let’s look at the deserialization loop next.

Eds3Server -> com.middlemind.Eds3.GameObjectManagerDefault.java

 
352 while (len >= msgLen) { 
353 d = new byte[msgLen]; 
354 System.arraycopy(bIn, pos, d, 0, msgLen); 
355 gow = new GameObjectWrapperDefault(); 
356  
357 if (this.serH != null) { 
358 d = this.serH.BeforeDeserializeGow(d, gow); 
359 } 
360  
361 gow.Deserialize(d);  

109

ibooks:///#chapterguid(18556DB0-7DC8-44DE-9AB8-38C4F1A29613)
ibooks:///#chapterguid(18556DB0-7DC8-44DE-9AB8-38C4F1A29613)

362  
363 if (this.serH != null) { 
364 gow = this.serH.AfterDeserializeGow(gow); 
365 } 
366  
367 ret.put(gow.GetId(), gow);  
368  
369 if (this.serH != null) { 
370 this.serH.DeserializeIteration(gow, d, ret, pos); 
371 } 
372  
373 pos += msgLen; 
374 len -= msgLen; 
375 } 
376  
377 Utils.wr("Found " + ret.size() + " game objects."); 
378 return ret;

 
The main deserialization loop is almost identical to the initial playerChar deserialization
code so we’ll cover it quickly. The main difference is on line 367 where the temporary vari-
able gow is added to the return data structure ret.

The strange thing about this implementation is that it assumes you are using the same
class instance to both serialize and deserialize data. For instance if you have a player-
Char defined it will be assumed to be part of the serialized data during the deserialization
process. You have to be careful and set the playerChar class field appropriately either to
null or an empty class instance in order to ensure it behaves properly.

This wraps up our review of the supporting classes on both the client and server side. Keep
in mind how the classes we’ve covered here function as we’ll see them in use on both the
client and server side soon. In the next part of this book we will return to the server code,
wrapping up our review of the server class’ main methods.

110

ArrayList

The ArrayList class is a resizable array, which can be found in the java.util package.

Related Glossary Terms

Index

Chapter 7 - Part 4: Server Code: Main Classes 1

Drag related terms here

Find Term

Boxing/Unboxing

Boxing is the manual conversion between the primitive types and their corresponding
object wrapper classes. For example, converting an int to an Integer, a double to
a Double, and so on. If the conversion goes the other way, this is called unboxing.

Related Glossary Terms

Drag related terms here

C#

C# is a hybrid of C and C++, it is a Microsoft programming language developed to com-
pete with Sun's Java language. C# is an object-oriented programming language used
with XML-based Web services on the .NET platform and designed for improving pro-
ductivity in the development of Web applications.

Related Glossary Terms

Drag related terms here

Class Fields

At its most basic, a field is a class level variable. This means it represents a value,
such as text or a numeric value that belongs to an instance of a class. Static class
fields belong to the class itself or in other words all instances of the class reference the
same static class fields.

Related Glossary Terms

Drag related terms here

Classes

In object-oriented programming, a class is an extensible program-code-template for
creating objects, providing initial values for state (member variables) and implementa-
tions of behavior (member functions or methods).

Related Glossary Terms

Drag related terms here

Client/Server

In this text client/server refers to the code that runs a network client and a network
server that communicate using the UDP/IP, universal datagram packet protocol, with
IP based network addresses.

Related Glossary Terms

Drag related terms here

Cross-platform

Able to be used on different types of computers or with different software packages.

Related Glossary Terms

Drag related terms here

Data Structure

In computer science, a data structure is a data organization, management, and stor-
age format that enables efficient access and modification.

Related Glossary Terms

Drag related terms here

Hashtable

Hashtable was part of the original java.util and is a concrete implementation of a Dic-
tionary. However, Java 2 re-engineered Hashtable so that it also implements the Map
interface. Thus, Hashtable is now integrated into the collections framework. It is similar
to HashMap, but is synchronized. Like HashMap, Hashtable stores key/value pairs in a
hash table. The C# equivalent used in this text is the Dictionary class.

Related Glossary Terms

Drag related terms here

HTTP

HTTP means HyperText Transfer Protocol. HTTP is the underlying protocol used by
the World Wide Web and this protocol defines how messages are formatted and trans-
mitted, and what actions Web servers and browsers should take in response to vari-
ous commands.

Related Glossary Terms

Drag related terms here

HTTP Response Code

HTTP response status codes indicate whether a specific HTTP request has been suc-
cessfully completed. Responses are grouped in five classes: informational responses,
successful responses, redirects, client errors, and servers errors.

Related Glossary Terms

Drag related terms here

IDE

An integrated development environment (IDE) is a software suite that consolidates ba-
sic tools required to write and test software.

Related Glossary Terms

Drag related terms here

Java

A general-purpose computer programming language designed to produce programs
that will run on any computer system.

Related Glossary Terms

Drag related terms here

L2 Object Publication

A specific object publication interaction mode that sends along position data along with
the object publication request and supports distance testing and aggregate return mes-
sages. The distance testing will prevent returning data from a player who is too far
away from the publication request initiating player. Also, the return messages are ag-
gregated into as few responses as possible leading to more efficient network communi-
cation.

Related Glossary Terms

Drag related terms here

Loopback Network Interface

Loopback address is a special IP number (127.0.0.1) that is designated for the soft-
ware loopback interface of a machine.

Related Glossary Terms

Drag related terms here

Message Identifier

The value of the first byte of a network request or response.

Related Glossary Terms

Drag related terms here

Namespaces

A namespace is a declarative region that provides a scope to the identifiers (the
names of types, functions, variables, etc) inside it. Namespaces are used to organize
code into logical groups and to prevent name collisions that can occur especially when
your code base includes multiple libraries.

Related Glossary Terms

Drag related terms here

Network Game Object

A network game object is a local game object that the current player is responsible for
publishing via an object publication interaction to the other players in the game.

Related Glossary Terms

Drag related terms here

Network Interactions

Network interactions are client initiated request/response messages.

Related Glossary Terms

Drag related terms here

Packages

A package is a namespace that organizes a set of related classes and interfaces. Con-
ceptually you can think of packages as being similar to different folders on your com-
puter. You might keep HTML pages in one folder, images in another, and scripts or ap-
plications in yet another. Because software written in the Java programming language
can be composed of hundreds or thousands of individual classes, it makes sense to
keep things organized by placing related classes and interfaces into packages.

Related Glossary Terms

Drag related terms here

Request/Response Model

In this text the request/response model refers to the nature of network communication.
The client initiates communication over UDP with a request and the server responds
back with a response.

Related Glossary Terms

Drag related terms here

Static Class Fields

A static field is in programming languages is the declaration for a variable that will be
held in common by all instances of a class. The static modifier determines the class
variable as one that will be applied universally to all instances of a particular class.

Related Glossary Terms

Drag related terms here

Static Class Members

When we declare a member of a class as static it means no matter how many objects
of the class are created, there is only one copy of the static member. A static
member is shared by all objects of the class. All static data is initialized to zero when
the first object is created, if no other initialization is present.

Related Glossary Terms

Drag related terms here

TCP

TCP (Transmission Control Protocol) is a standard that defines how to establish and
maintain a network conversation via which application programs can exchange data.
TCP works with the Internet Protocol (IP), which defines how computers send packets
of data to each other.

Related Glossary Terms

Drag related terms here

UDP

User Datagram Protocol (UDP) is part of the Internet Protocol suite used by programs
running on different computers on a network. UDP is used to send short messages
called datagrams but overall, it is an unreliable, connectionless protocol.

Related Glossary Terms

Drag related terms here

